142 resultados para CHEMICAL REACTION


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Niobium pentoxide reacts actively with concentrate NaOH solution under hydrothermal conditions at as low as 120 degrees C. The reaction ruptures the corner-sharing of NbO7 decahedra and NbO6 octahedra in the reactant Nb2O5, yielding various niobates, and the structure and composition of the niobates depend on the reaction temperature and time. The morphological evolution of the solid products in the reaction at 180 degrees C is monitored via SEM: the fine Nb2O5 powder aggregates first to irregular bars, and then niobate fibers with an aspect ratio of hundreds form. The fibers are microporous molecular sieve with a monoclinic lattice, Na2Nb2O6 center dot(2)/3H2O. The fibers are a metastable intermediate of this reaction, and they completely convert to the final product NaNbO3 Cubes in the prolonged reaction of 1 h. This study demonstrates that by carefully optimizing the reaction condition, we can selectively fabricate niobate structures of high purity, including the delicate microporous fibers, through a direct reaction between concentrated NaOH solution and Nb2O5. This synthesis route is simple and suitable for the large-scale production of the fibers. The reaction first yields poorly crystallized niobates consisting of edge-sharing NbO6 octahedra, and then the microporous fibers crystallize and grow by assembling NbO6 octahedra or clusters of NbO6 octahedra and NaO6 units. Thus, the selection of the fibril or cubic product is achieved by control of reaction kinetics. Finally, niobates with different structures exhibit remarkable differences in light absorption and photoluminescence properties. Therefore, this study is of importance for developing new functional materials by the wet-chemistry process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report here a validated method for the quantification of a new immunosuppressant drug FTY720, using HPLC-tandem mass spectrometry. Whole blood samples (500 mu l) were subjected to liquid-liquid extraction, in the presence of an internal standard (Y-32919). Mass spectrometric detection was by selected reaction monitoring with an atmospheric pressure chemical ionization source in positive ionization mode (FTY720: m/z 308.3 -> 255.3). The assay was linear from 0.2 to 25 mu g/l (r(2) > 0.997, n = 5). The inter- and intra-day analytical recovery and imprecision for quality control samples (0.5, 7 and 15 mu g/l) were 95.8-103.2 and < 5.5%, respectively. At the lower limit of quantification (0.2 mu g/l) the interand intra-day analytical recovery was 99.0-102.8% with imprecision of < 7.6% (n = 5). The assay had a mean relative recovery of 100.5 +/- 5.8% (n = 15). Extracted samples were stable for 16 h. IFTY720 quality control samples were stable at room temperature for 16 h at 4 degrees C for at least 8 days and when taken through at least three freeze-thaw cycles. In conclusion, the method described displays analytical performance characteristics that are suitable for pharmacokinetic studies in humans. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mesoporous chromium oxide (Cr2O3) nanocrystals were first synthesized by the thermal decomposition reaction of Cr(NO3)(3)(circle)9H(2)O using citric acid monohydrate (CA) as the mesoporous template agent. The texture and chemistry of chromium oxide nanocrystals were characterized by N-2 adsorption-desorption isotherms, FTIR, X-ray diffraction (XRD), UV-vis, and thermoanalytical methods. It was shown that the hydrate water and CA are the crucial factors in influencing the formation of mesoporous Cr2O3 nanocrystals in the mixture system. The decomposition of CA results in the formation of a mesoporous structure with wormlike pores. The hydrate water of the mixture provides surface hydroxyls that act as binders, making the nanocrystals aggregate. The pore structures and phases of chromium oxide are affected by the ratio of precursor-to-CA, thermal temperature, and time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Imidoylketenes 11 and oxoketenimines 12 are generated by flash vacuum thermolysis of Meldrum's acid derivatives 9, pyrrolediones 17 and 18, and triazole 19 and are observed by IR spectroscopy. Ketenimine-3-carboxylic acid esters 12a are isolable at room temperature. Ketenes 11 and ketenimines 12 undergo rapid interconversion in the gas phase, and the ketenes cyclize to 4-quinolones 13. When using an amine leaving group in Meldrum's acid derivatives 9c, the major reaction products are aryliminopropadienones, ArN=C=C=C=O (15). The latter react with 1 equiv of nucleophile to produce ketenimines 12 and with 2 equiv to afford maIonic acid imide derivatives 16. N-Arylketenimine-C-carboxamides 12c cyclize to quinolones 13c via the transient amidinoketenes 11c at temperatures of 25-40 degrees C. This implies rapid interconversion of ketenes and ketenimines by a 1,3-shift of the dimethylamino group, even at room temperature. This interconversion explains previously poorly understood outcomes of the ynamine-isocyanate reaction. The solvent dependence of the tautomerism of 4-quinolones/4-quinolinols is discussed. Rotational barriers of NMe2 groups in amidoketenimines 12c and malonioc amides and amidines 16 (24) are reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Weakly branched silica films formed by the two-step sol-gel process allow for the formation of high selectivity membranes for gas separation. 29Si NMR and gas permeation showed that reduced crosslinking leads to He/CH4 selectivity improvement from 300 to 1000. Applied in membrane reactor for cyclohexane conversion to benzene, conversions were achieved at 14 fold higher than a conventional reactor at 250°C. Hydrothermal stability studies showed that carbon templating of silica is required for hydrothermally stable membranes. From our work it was shown that with correct application of chemistry, practical membrane systems can be built to suit gas separation (e. g. hydrogen fuel) and reactor systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Equilibrium Flux Method [1] is a kinetic theory based finite volume method for calculating the flow of a compressible ideal gas. It is shown here that, in effect, the method solves the Euler equations with added pseudo-dissipative terms and that it is a natural upwinding scheme. The method can be easily modified so that the flow of a chemically reacting gas mixture can be calculated. Results from the method for a one-dimensional non-equilibrium reacting flow are shown to agree well with a conventional continuum solution. Results are also presented for the calculation of a plane two-dimensional flow, at hypersonic speed, of a dissociating gas around a blunt-nosed body.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A general, fast wavelet-based adaptive collocation method is formulated for heat and mass transfer problems involving a steep moving profile of the dependent variable. The technique of grid adaptation is based on sparse point representation (SPR). The method is applied and tested for the case of a gas–solid non-catalytic reaction in a porous solid at high Thiele modulus. Accurate and convergent steep profiles are obtained for Thiele modulus as large as 100 for the case of slab and found to match the analytical solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate here a modification of the discrete random pore model [Bhatia SK, Vartak BJ, Carbon 1996;34:1383], by including an additional rate constant which takes into account the different reactivity of the initial pore surface having attached functional groups and hydrogens, relative to the subsequently exposed surface. It is observed that the relative initial reactivity has a significant effect on the conversion and structural evolution, underscoring the importance of initial surface chemistry. The model is tested against experimental data on chemically controlled char oxidation and steam gasification at various temperatures. It is seen that the variations of the reaction rate and surface area with conversion are better represented by the present approach than earlier random pore models. The results clearly indicate the improvement of model predictions in the low conversion region, where the effect of the initially attached functional groups and hydrogens is more significant, particularly for char oxidation. It is also seen that, for the data examined, the initial surface chemistry is less important for steam gasification as compared to the oxidation reaction. Further development of the approach must also incorporate the dynamics of surface complexation, which is not considered here.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Simple techniques are presented for rearrangement of an infinite series in a systematic way such that the convergence of the resulting expression is accelerated. These procedures also allow calculation of required boundary derivatives. Several examples of conduction and diffusion-reaction problems illustrate the methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rate expression for enzyme poisoning which are consistent with a Michaelis-Menten main reaction are used to analyze the performance of a fixed bed reactor containing immobilized enzyme. When enzyme deactivation results from the irreversible bonding of a product molecule to an existing substrate-enzyme complex, it is shown that minimum enzyme activity can occur in the interior of the bed, well away from the ends. This suggests that bed sectioning techniques may enable direct evaluation of fundamental poisoning mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The long performance of an isothermal fixed bed reactor undergoing catalyst poisoning is theoretically analyzed using the dispersion model. First order reaction with dth order deactivation is assumed and the model equations are solved by matched asymptotic expansions for large Peclet number. Simple closed-form solutions, uniformly valid in time, are obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analytical expressions are developed for the time-dependent reactant concentration and catalyst activity in an isothermal CSTR with Langmuir-Hinshelwood kinetics of deactivation and reaction. Several parallel and series posioning mechanisms are considered for a reactor which, without poisoning, would operate at a unique steady state. The use of matched asymptotic expansions and abandonment of the usual initial-steady-state assumption give results, valid from startup to final loss of activity, whose accuracy can be improved systematically.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A modified formula for the integral transform of a nonlinear function is proposed for a class of nonlinear boundary value problems. The technique presented in this paper results in analytical solutions. Iterations and initial guess, which are needed in other techniques, are not required in this novel technique. The analytical solutions are found to agree surprisingly well with the numerically exact solutions for two examples of power law reaction and Langmuir-Hinshelwood reaction in a catalyst pellet.