49 resultados para CELL-CULTURES


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The number of cells generated by a proliferating stem or precursor cell can be influenced both by proliferation and by the degree of cell death/survival of the progeny generated. In this study, the extent to which cell survival controls progenitor number was examined by comparing the growth characteristics of neurosphere cultures derived from mice lacking genes for the death inducing Bcl-2 homologue Hara Kiri (Hrk), apoptosis-associated protein 1 (Apaf1), or the prosurvival nuclear factor-kappa B (NF kappa B) subunits p65, p50, or c-rel. We found no evidence that Hrk or Apaf1, and by inference the mitochondrial cell death pathway, are involved in regulating the number of neurosphere-derived progeny. However, we identified the p65p50 NF kappa B dimer as being required for the normal growth and expansion of neurosphere cultures. Genetic loss of both p65 and p50 NF kappa B subunits resulted in a reduced number of progeny but an increased proportion of neurons. No effect on cell survival was observed. This suggests that the number and fate of neural progenitor cells are more strongly regulated by cell cycle control than survival. (c) 2005 Wiley-Liss, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since the 1960s, numerous studies on sugarcane plant regeneration have been reported. Essentially, successful culture and regeneration of plants from protoplasts, cells, callus, and various tissue and organs, have been achieved in this crop. Although plant regeneration from callus cultures had been reported since the 1960s, definitive proof of somatic embryo development was not available until 1983. Since then, considerable progress has been made in understanding and refining somatic embryogenesis and plant regeneration in sugarcane, for which development of an efficient embryogenic system was critical for the application of transgenic technology. Recent research in Australia and South Africa has led to the development of direct somatic embryogenic systems, which may improve transgenesis in sugarcane.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Throughout the process of development and continuing into adulthood, stem cells function as a reservoir of undifferentiated cell types, whose role is to underpin cell genesis in a variety of tissues and organs. In the adult, they play an essential homeostatic role by replacing differentiated tissue cells "worn off" by physiological turnover or lost to injury or disease. As such, the discovery of such cells in the adult mammalian central nervous system (CNS), an organ traditionally thought to have little or no regenerative capacity, was most unexpected. Nonetheless, by employing a novel serum-free culture system termed the neurosphere assay, Reynolds and Weiss demonstrated the presence of neural stem cells in both the adult (Reynolds and Weiss, 1992) and embryonic mouse brain (Reynolds et al., 1992). Here we describe how to generate, serially passage, and differentiate neurospheres derived from both the developing and adult brain, and provide more technical details that will enable one to achieve reproducible cultures, which can be passaged over an extended period of time.