76 resultados para Breeding Dispersal
Resumo:
Seventy sorghum inbred lines which formed part of the Queensland Department of Primary Industries (QDPI) sorghum breeding program were screened with 104 previously mapped RFLP markers. The lines were related by pedigree and consisted of ancestral source lines, intermediate lines and recent releases from the program. We compared the effect of defining marker alleles using either identity by state (IBS) or identity by descent (IBD) on our capacity to trace markers through the pedigree and detect evidence of selection for particular alleles. Allelic identities defined using IBD were much more sensitive for detecting non-Mendelian segregation in this pedigree. Only one marker allele showed significant evidence of selection when IBS was used compared with ten regions with particular allelic identities when IBD was used. Regions under selection were compared with the location of QTLs for agronomic traits known to be under selection in the breeding program. Only two of the ten regions were associated with known QTLs that matched with knowledge of the agronomic characteristics of the ancestral lines. Some of the other regions were hypothesised to be associated with genes for particular traits based on the properties of the ancestral source lines.
Resumo:
Plant breeders use many different breeding methods to develop superior cultivars. However, it is difficult, cumbersome, and expensive to evaluate the performance of a breeding method or to compare the efficiencies of different breeding methods within an ongoing breeding program. To facilitate comparisons, we developed a QU-GENE module called QuCim that can simulate a large number of breeding strategies for self-pollinated species. The wheat breeding strategy Selected Bulk used by CIMMYT's wheat breeding program was defined in QuCim as an example of how this is done. This selection method was simulated in QuCim to investigate the effects of deviations from the additive genetic model, in the form of dominance and epistasis, on selection outcomes. The simulation results indicate that the partial dominance model does not greatly influence genetic advance compared with the pure additive model. Genetic advance in genetic systems with overdominance and epistasis are slower than when gene effects are purely additive or partially dominant. The additive gene effect is an appropriate indicator of the change in gene frequency following selection when epistasis is absent. In the absence of epistasis, the additive variance decreases rapidly with selection. However, after several cycles of selection it remains relatively fixed when epistasis is present. The variance from partial dominance is relatively small and therefore hard to detect by the covariance among half sibs and the covariance among full sibs. The dominance variance from the overdominance model can be identified successfully, but it does not change significantly, which confirms that overdominance cannot be utilized by an inbred breeding program. QuCim is an effective tool to compare selection strategies and to validate some theories in quantitative genetics.
Resumo:
An investigation was conducted to evaluate the impact of experimental designs and spatial analyses (single-trial models) of the response to selection for grain yield in the northern grains region of Australia (Queensland and northern New South Wales). Two sets of multi-environment experiments were considered. One set, based on 33 trials conducted from 1994 to 1996, was used to represent the testing system of the wheat breeding program and is referred to as the multi-environment trial (MET). The second set, based on 47 trials conducted from 1986 to 1993, sampled a more diverse set of years and management regimes and was used to represent the target population of environments (TPE). There were 18 genotypes in common between the MET and TPE sets of trials. From indirect selection theory, the phenotypic correlation coefficient between the MET and TPE single-trial adjusted genotype means [r(p(MT))] was used to determine the effect of the single-trial model on the expected indirect response to selection for grain yield in the TPE based on selection in the MET. Five single-trial models were considered: randomised complete block (RCB), incomplete block (IB), spatial analysis (SS), spatial analysis with a measurement error (SSM) and a combination of spatial analysis and experimental design information to identify the preferred (PF) model. Bootstrap-resampling methodology was used to construct multiple MET data sets, ranging in size from 2 to 20 environments per MET sample. The size and environmental composition of the MET and the single-trial model influenced the r(p(MT)). On average, the PF model resulted in a higher r(p(MT)) than the IB, SS and SSM models, which were in turn superior to the RCB model for MET sizes based on fewer than ten environments. For METs based on ten or more environments, the r(p(MT)) was similar for all single-trial models.
Resumo:
The shrimp aquaculture industry is a relatively new livestock industry, having developed over the past 30 years. Thus, it is poised to take advantage of new technologies from the outset of selective breeding programs. This contrasts with long established livestock industries, where there are already highly specialised breeds. This review focuses specifically on the potential application of microarrays to shrimp breeding. Potential applications of microarrays in selective breeding programs are summarised. Microarrays can be used as a rapid means to generate molecular markers for genetic linkage mapping, and genetic maps have been constructed for yeast, Arabidopsis and barley using microarray technology. Microarrays can also be used in the hunt for candidate genes affecting particular traits, leading to development of perfect markers for these traits (i.e. causative mutations). However, this requires that microarray analysis be combined with genetic linkage mapping, and that substantial genomic information is available for the species in question. A novel application of microarrays is to treat gene expression as a quantitative trait in itself and to combine this with linkage mapping to identify quantitative trait loci controlling the levels of gene expression; this approach may identify higher level regulatory genes in specific pathways. Finally, patterns of gene expression observed using microarrays may themselves be treated as phenotypic traits in selection programs (e.g. a particular pattern of gene expression might be indicative of a disease tolerant individual). Microarrays are now being developed for a number of shrimp species in laboratories around the world, primarily with a focus on identifying genes involved in the immune response. However, at present, there is no central repository of shrimp genomic information, which limits the rate at which shrimp genomic research can be progressed. The application of microarrays to shrimp breeding will be extremely limited until there is a shared repository of genomic information for shrimp, and the collective will and resources to develop comprehensive genomic tools for shrimp.
Resumo:
Despite the typically low population densities and animal-mediated pollination of tropical forest trees, outcrossing and long-distance pollen dispersal are the norm. We reviewed the genetic literature on mating systems and pollen dispersal for neotropical trees to identify the ecological and phylogenetic correlates. The 36 studies surveyed found >90% outcrossed mating for 45 hermaphroditic or monoecious species. Self-fertilization rates varied inversely with population density and showed phylogenetic and geographic trends. The few direct measures of pollen flow (N = 11 studies) suggest that pollen dispersal is widespread among low-density tropical trees, ranging from a mean of 200 m to over 19 km for species pollinated by small insects or bats. Future research needs to examine (1) the effect of inbreeding depression on observed outcrossing rates, (2) pollen dispersal in a wide range of pollination syndromes and ecological classes, (3) and the range of variation of mating system expression at different hierarchical levels, including individual, seasonal, population, ecological, landscape and range wide.
Resumo:
The advent of molecular markers as a tool to aid selection has provided plant breeders with the opportunity to rapidly deliver superior genetic solutions to problems in agricultural production systems. However, a major constraint to the implementation of marker-assisted selection (MAS) in pragmatic breeding programs in the past has been the perceived high relative cost of MAS compared to conventional phenotypic selection. In this paper, computer simulation was used to design a genetically effective and economically efficient marker-assisted breeding strategy aimed at a specific outcome. Under investigation was a strategy involving the integration of both restricted backcrossing and doubled haploid (DH) technology. The point at which molecular markers are applied in a selection strategy can be critical to the effectiveness and cost efficiency of that strategy. The application of molecular markers was considered at three phases in the strategy: allele enrichment in the BC1F1 population, gene selection at the haploid stage and the selection for recurrent parent background of DHs prior to field testing. Overall, incorporating MAS at all three stages was the most effective, in terms of delivering a high frequency of desired outcomes and at combining the selected favourable rust resistance, end use quality and grain yield alleles. However, when costs were included in the model the combination of MAS at the BC1F1 and haploid stage was identified as the optimal strategy. A detailed economic analysis showed that incorporation of marker selection at these two stages not only increased genetic gain over the phenotypic alternative but actually reduced the over all cost by 40%.
Resumo:
In the past 20 years, the rice-breeding program in Thailand had little success in developing new cultivars to replace Kao Dawk Mali 105 (KDML105) and Kao Khor 6 (RD6) for the tainted lowland rice environments. The main reason for the poor adoption of new cultivars by farmers is the susceptibility to diseases and unacceptable grain qualities. The conventional breeding program also takes at least 15 years from initial crossing to the release of new cultivars. A new breeding strategy can be established to shorten the period for cultivar improvement by using marker-assisted selection (MAS), rapid generations advance (RGA), and early generation testing in multi-locations for grain yield and qualities. Four generation of MAS backcross breeding were conducted to transfer genes and QTL for bacterial blight resistance (BLB), submergence tolerance (SUB), brown plant hopper resistance (BPH) and blast resistance (BL) into KDML105. Selected backcross lines, introgressed with target gene/QTL, were tolerant to SUB and resistant to BLB, BPH and BL. The agronomic performance and grain quality of these lines were as good as or better than KDML105.
Resumo:
In species with low levels of dispersal the chance of closely related individuals breeding may be a potential problem; sex-biased dispersal is a mechanism that may decrease the possibility of cosanguineous mating. Fragmentation of the habitat in which a species lives may affect mechanisms such as sex-biased dispersal, which may in turn exacerbate more direct effects of fragmentation such as decreasing population size that may lead to inbreeding depression. Relatedness statistics calculated using microsatellite DNA data showed that rainforest fragmentation has had an effect on the patterns of dispersal in the prickly forest skink (Gnypetoscincus queenslandiae), a rainforest endemic of the Wet Tropics of north eastern Australia. A lower level of relatedness was found in fragments compared to continuous forest sites due to a significantly lower level of pairwise relatedness between males in rainforest fragments. The pattern of genetic relatedness between sexes indicates the presence of male-biased dispersal in this species, with a stronger pattern detected in populations in rainforest fragments. Male prickly forest skinks may have to move further in fragmented habitat in order to find mates or suitable habitat logs.
Resumo:
1. Management decisions regarding invasive plants often have to be made quickly and in the face of fragmentary knowledge of their population dynamics. However, recommendations are commonly made on the basis of only a restricted set of parameters. Without addressing uncertainty and variability in model parameters we risk ineffective management, resulting in wasted resources and an escalating problem if early chances to control spread are missed. 2. Using available data for Pinus nigra in ungrazed and grazed grassland and shrubland in New Zealand, we parameterized a stage-structured spread model to calculate invasion wave speed, population growth rate and their sensitivities and elasticities to population parameters. Uncertainty distributions of parameters were used with the model to generate confidence intervals (CI) about the model predictions. 3. Ungrazed grassland environments were most vulnerable to invasion and the highest elasticities and sensitivities of invasion speed were to long-distance dispersal parameters. However, there was overlap between the elasticity and sensitivity CI on juvenile survival, seedling establishment and long-distance dispersal parameters, indicating overlap in their effects on invasion speed. 4. While elasticity of invasion speed to long-distance dispersal was highest in shrubland environments, there was overlap with the CI of elasticity to juvenile survival. In shrubland invasion speed was most sensitive to the probability of establishment, especially when establishment was low. In the grazed environment elasticity and sensitivity of invasion speed to the severity of grazing were consistently highest. Management recommendations based on elasticities and sensitivities depend on the vulnerability of the habitat. 5. Synthesis and applications. Despite considerable uncertainty in demography and dispersal, robust management recommendations emerged from the model. Proportional or absolute reductions in long-distance dispersal, juvenile survival and seedling establishment parameters have the potential to reduce wave speed substantially. Plantations of wind-dispersed invasive conifers should not be sited on exposed sites vulnerable to long-distance dispersal events, and trees in these sites should be removed. Invasion speed can also be reduced by removing seedlings, establishing competitive shrubs and grazing. Incorporating uncertainty into the modelling process increases our confidence in the wide applicability of the management strategies recommended here.
Resumo:
Within cooperative societies, group members share in caring for offspring. Although division of labour among group members has been relatively well studied in insects, less is known about vertebrates. Most studies of avian helping focus solely on the extent to which helpers provision the offspring, however, helpers can participate in everything from nest building to predator defence. Bad provisioners may, for example, not be as 'uncooperative' as they appear. if they are good defenders. Thus, the distribution of helping tasks between group members should have important implications for our interpretation of group dynamics. Here, we compare two distinct forms of helping behaviour in the cooperatively breeding noisy miner (Manorina melanocephala): chick provisioning and mobbing nest predators. We show that the way in which individual helpers invest in these two helping behaviours varies enormously across individuals and among social groups. Good provisioners often contributed relatively little to mobbing and vice versa. Indeed, (18%) of helpers only mobbed, 22% just provisioned, whereas 60% of helpers performed both forms of helping. Across nests, provisioning was significantly negatively correlated with mobbing effort. We suggest that small differences in the costs or benefits of different aspects of helping (due to differences in age, relatedness or social status) have a big impact on the division of labour within a group. Consequently, social groups can be made up from individuals who often specialise in one helping behaviour, and/or helpers who perform a number of behaviours to differing degrees. Division of labour within social groups will, therefore, have important consequences for the maintenance of cooperatively breeding in vertebrates.
Resumo:
We studied habitat selection and breeding success in marked populations of a protected seabird (family Alcidae), the marbled murrelet (Brachyramphus marmoratus), in a relatively intact and a heavily logged old-growth forest landscape in south-western Canada. Murrelets used old-growth fragments either proportionately to their size frequency distribution (intact) or they tended to nest in disproportionately smaller fragments (logged). Multiple regression modelling showed that murrelet distribution could be explained by proximity of nests to landscape features producing biotic and abiotic edge effects. Streams, steeper slopes and lower elevations were selected in both landscapes, probably due to good nesting habitat conditions and easier access to nest sites. In the logged landscape, the murrelets nested closer to recent clearcuts than would be expected. Proximity to the ocean was favoured in the intact area. The models of habitat selection had satisfactory discriminatory ability in both landscapes. Breeding success (probability of nest survival to the middle of the chick rearing period), inferred from nest attendance patterns by radio-tagged parents, was modelled in the logged landscape. Survivorship was greater in areas with recent clearcuts and lower in areas with much regrowth, i.e. it was positively correlated with recent habitat fragmentation. We conclude that marbled murrelets can successfully breed in old-growth forests fragmented by logging.
Resumo:
Amyloodinium ocellatum, a frequently encountered parasite in marine aquaculture, was investigated to determine if infective dinospore stages could be transported in aerosol droplets. We used an in vivo model incorporating static and dynamic airflow systems and found dinospores of A. ocellatum could travel in aerosol droplets (up to 440 turn in a static system and up to 3 m in a dynamic one). This is the first record of this transmission pathway for a marine protozoan parasite. It is possible that other marine protozoans can transfer via the aerobiological pathway. Management of A. ocellatum infections in aquaculture facilities could be affected, particularly where tanks and ponds are situated in close proximity. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Factors affecting the seasonal distribution of the vulnerable black-faced impala at Etosha National Park, Namibia and the spread of the impala in the park since their translocation there in the 1970s were studied in the hot dry season of 2000 and the wet season of 2001 in order to provide information for future translocations of this antelope. In the 30 years since their release in the park, black-faced impala appear to have dispersed a maximum of 31.5 km from their initial release sites, effectively forming five subpopulations based on their five initial release sites. The mean minimum distance that impala had dispersed between water holes since their release was 7.11 +/- 1.47 km. Black-faced impala concentrated strongly around water holes; more than 50% were within 1 km of water holes in both seasons. Changes in population densities in different habitats may have resulted from seasonal movements of impala between adjacent habitats. The role of initial release sites in determining the distribution of threatened species such as the black-faced impala is discussed in light of its importance for future translocations.