47 resultados para Branching random walk


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sensitivity of output of a linear operator to its input can be quantified in various ways. In Control Theory, the input is usually interpreted as disturbance and the output is to be minimized in some sense. In stochastic worst-case design settings, the disturbance is considered random with imprecisely known probability distribution. The prior set of probability measures can be chosen so as to quantify how far the disturbance deviates from the white-noise hypothesis of Linear Quadratic Gaussian control. Such deviation can be measured by the minimal Kullback-Leibler informational divergence from the Gaussian distributions with zero mean and scalar covariance matrices. The resulting anisotropy functional is defined for finite power random vectors. Originally, anisotropy was introduced for directionally generic random vectors as the relative entropy of the normalized vector with respect to the uniform distribution on the unit sphere. The associated a-anisotropic norm of a matrix is then its maximum root mean square or average energy gain with respect to finite power or directionally generic inputs whose anisotropy is bounded above by a≥0. We give a systematic comparison of the anisotropy functionals and the associated norms. These are considered for unboundedly growing fragments of homogeneous Gaussian random fields on multidimensional integer lattice to yield mean anisotropy. Correspondingly, the anisotropic norms of finite matrices are extended to bounded linear translation invariant operators over such fields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The branching structure of neurones is thought to influence patterns of connectivity and how inputs are integrated within the arbor. Recent studies have revealed a remarkable degree of variation in the branching structure of pyramidal cells in the cerebral cortex of diurnal primates, suggesting regional specialization in neuronal function. Such specialization in pyramidal cell structure may be important for various aspects of visual function, such as object recognition and color processing. To better understand the functional role of regional variation in the pyramidal cell phenotype in visual processing, we determined the complexity of the dendritic branching pattern of pyramidal cells in visual cortex of the nocturnal New World owl monkey. We used the fractal dilation method to quantify the branching structure of pyramidal cells in the primary visual area (V1), the second visual area (V2) and the caudal and rostral subdivisions of inferotemporal cortex (ITc and ITr, respectively), which are often associated with color processing. We found that, as in diurnal monkeys, there was a trend for cells of increasing fractal dimension with progression through these cortical areas. The increasing complexity paralleled a trend for increasing symmetry. That we found a similar trend in both diurnal and nocturnal monkeys suggests that it was a feature of a common anthropoid ancestor.