117 resultados para Box-Jenkins
Resumo:
Diverse self-incompatibility (SI) mechanisms permit flowering plants to inhibit fertilization by pollen that express specificities in common with the pistil. Characteristic of at least two model systems is greatly reduced recombination across large genomic tracts surrounding the S-locus, which regulates SI. In three angiosperm families, including the Solanaceae, the gene that controls the expression of gametophytic SI in the pistil encodes a ribonuclease (S-RNase). The gene that controls pollen SI expression is currently unknown, although several candidates have recently been proposed. Although each candidate shows a high level of polymorphism and complete allelic disequilibrium with the S-RNase gene, such properties may merely reflect tight linkage to the S-locus, irrespective of any functional role in SI. We analyzed the magnitude and nature of nucleotide variation, with the objective of distinguishing likely candidates for regulators of SI from other genes embedded in the S-locus region. We studied the S-RNase gene of the Solanaceae and 48A, a candidate for the pollen gene in this system, and we also conducted a parallel analysis of the regulators of sporophytic SI in Brassica, a system in which both the pistil and pollen genes are known. Although the pattern of variation shown by the pollen gene of the Brassica system is consistent with its role as a determinant of pollen specificity, that of 48A departs from expectation. Our analysis further suggests that recombination between 48A and S-RNase may have occurred during the interval spanned by the gene genealogy, another indication that 48A may not regulate SI expression in pollen.
Resumo:
Perianth development is specifically disrupted in mutants of the PETAL LOSS (PTL) gene, particularly petal initiation and orientation. We have cloned PTL and show that it encodes a plant-specific trihelix transcription factor, one of a family previously known only as regulators of light-controlled genes. PTL transcripts were detected in the early-developing flower, in four zones between the initiating sepals and in their developing margins. Strong misexpression of PTL in a range of tissues universally results in inhibition of growth, indicating that its normal role is to suppress growth between initiating sepals, ensuring that they remain separate. Consistent with this, sepals are sometimes fused in ptl single mutants, but much more frequently in double mutants with either of the organ boundary genes cup-shaped cotyledon1 or 2. Expression of PTL within the newly arising sepals is apparently prevented by the PINOID auxin-response gene. Surprisingly, PTL expression could not be detected in petals during the early stages of their development, so petal defects associated with PTL loss of function may be indirect, perhaps involving disruption to signalling processes caused by overgrowth in the region. PTL-driven reporter gene expression was also detected at later stages in the margins of expanding sepals, petals and stamens, and in the leaf margins; thus, PTL may redundantly dampen lateral outgrowth of these organs, helping define their final shape.
Resumo:
Numerical methods are used to simulate the double-diffusion driven convective pore-fluid flow and rock alteration in three-dimensional fluid-saturated geological fault zones. The double diffusion is caused by a combination of both the positive upward temperature gradient and the positive downward salinity concentration gradient within a three-dimensional fluid-saturated geological fault zone, which is assumed to be more permeable than its surrounding rocks. In order to ensure the physical meaningfulness of the obtained numerical solutions, the numerical method used in this study is validated by a benchmark problem, for which the analytical solution to the critical Rayleigh number of the system is available. The theoretical value of the critical Rayleigh number of a three-dimensional fluid-saturated geological fault zone system can be used to judge whether or not the double-diffusion driven convective pore-fluid flow can take place within the system. After the possibility of triggering the double-diffusion driven convective pore-fluid flow is theoretically validated for the numerical model of a three-dimensional fluid-saturated geological fault zone system, the corresponding numerical solutions for the convective flow and temperature are directly coupled with a geochemical system. Through the numerical simulation of the coupled system between the convective fluid flow, heat transfer, mass transport and chemical reactions, we have investigated the effect of the double-diffusion driven convective pore-fluid flow on the rock alteration, which is the direct consequence of mineral redistribution due to its dissolution, transportation and precipitation, within the three-dimensional fluid-saturated geological fault zone system. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Cells of the mononuclear phagocyte lineage possess receptors for macrophage colony-stimulating factor (CSF-1) encoded by the c-fms protooncogene and respond to CSF-1 with increased survival, growth, differentiation, and reversible changes in function. The c-fms gene is itself a macrophage differentiation marker. In whole mount analyses of mRNA expression in embryos, c-fms is expressed at very high levels on placental trophoblasts. It is detectable on individual cells in the yolk sac around 8.5 to 9 days postcoitus, appears on isolated cells in the head of the embryo around 9.5 dpc, and appears on numerous cells throughout the embryo by day 10.5. The extent of c-fms expression is much greater than for other macrophage-specific genes including lysozyme and a macrophage-specific protein tyrosine phosphatase. Our studies of the cis-acting elements of the c-fms promoter have indicated a key role for collaboration between the macrophage-specific transcription factor, Pu.1, which functions in determining the site of transcription initiation, and other members of the Ets transcription factor family. This is emerging as a common pattern in macrophage-specific promoters. We have shown that two PU box elements alone can function as a macrophage-specific promoter. The activity of both the artifical promoter and the c-fms promoter is activated synergistically by coexpression of Pu.1 and another Ets factor, c-Ets-2. A 3.5kb c-fms exon 2 promoter (but not the 300bp proximal promoter) is also active in a wide diversity of tumor cell lines. The interesting exception is the melanoma cell line K1735, in which the promoter is completely shut down and expression of c-fms causes growth arrest and cell death. The activity of the exon 2 promoter in these nonmacrophages is at least as serum responsive as the classic serum-responsive promoter of the c-fos gene. It is further inducible in nonmacrophages by coexpression of the c-fms product. Unlike other CSF-1/c-fms-responsive promoters, the c-fms promoter is not responsive to activated Ras even when c-Ets-2 is coexpressed. In most lines, production of full length c-fms is prevented by a downstream intronic terminator, but in Lewis lung carcinoma, read-through does occur, and expression of both c-fms and other macrophage-specific genes such as lysozyme and urokinase becomes detectable in conditions of serum deprivation. (C) 1997 Wiley-Liss, Inc.
Resumo:
The present study investigated the relationship between plasma potassium ion concentration ([K+]) and skeletal muscle torque during three different 15-min recovery periods after fatigue induced by four 30-s sprints. Four males and one female completed the multiple sprint exercise on three separate days; recovery was passive, i.e. no cycling exercise (PRec), active cycling at 30% peak oxygen consumption (V) over dot(2peak) (30% Rec) and active cycling at 60% (V) over dot(2peak) (60% Rec). Plasma [K+] was measured from blood sampled from an antecubital vein of subjects at rest and at 0, 3, 5, 10 and 15 min into each recovery. Isokinetic leg strength was measured at rest and at 1, 6, 11 and 16 min during each recovery. Following the exhaustive sprints; [K+] increased significantly from an average mean (SEM) resting value of 3.81 (0.07) mmol.l(-1) to 4.48 (0.19) mmol.l(-1) (P < 0.01). In all recovery conditions, plasma [K+] returned to resting levels within 3 min following the fourth sprint. However, in the two active recovery conditions plasma [K+] increased over the remainder of the recovery periods to 4.36 (0.12) mmol.l(-1) in the 30% Rec condition and 4.62 (0.12) mmol.l(-1) in the 60% Rec condition, the latter being significantly higher than the former (P < 0.01). The maximum torque measured following the sprints decreased significantly, on average, to 61.1 (8.36)% of peak levels (P < 0.01). After 15 min of recovery, maximum torque was highest in the 30% Rec condition at 92.13 (3.06)% of peak levels (P < 0.01), compared to 85.23 (3.64)% and 85.71 (0.82)% for the PRec and 60% Rec conditions, respectively. In contrast to the significant differences in plasma [K+] across all three recovery conditions, muscle torque recovery was significantly different in only the 30% Rec condition. In summary, recovery of peak levels of muscle torque following fatiguing exercise does not appear to follow changes in plasma [K+].
Resumo:
Cytokines are secreted proteins that regulate important cellular responses such as proliferation and differentiation(1). Key events in cytokine signal transduction are well defined: cytokines induce receptor aggregation, leading to activation of members of the JAK family of cytoplasmic tyrosine kinases. In turn, members af the STAT family of transcription factors are phosphorylated, dimerize and increase the transcription of genes with STAT recognition sites in their promoters(1-4). Less is known of how cytokine signal transduction is switched off. We have cloned a complementary DNA encoding a protein SOCS-1, containing an SH2-domain, by its ability to inhibit the macrophage differentiation of M1 cells in response to interleukin-6. Expression of SOCS-1 inhibited both interleukin-6-induced receptor phosphorylation and STAT activation. We have also cloned two-relatives of SOCS-1, named SOCS-2 and SOCS-3, which together with the previously described CIS (ref. 5) form a new family of proteins. Transcription of all four SOCS genes is increased rapidly in response to interleukin-6, in vitro and in vivo, suggesting they may act in a classic negative feedback loop to regulate cytokine signal transduction.
Resumo:
The standard critical power test protocol on the cycle prescribes a series of trials to exhaustion, each at a different but constant power setting. Recently the protocol has been modified and applied to a series of trials to exhaustion each at a different ramp incremental rate. This study was undertaken to compare critical power and anaerobic work capacity estimates in the same group of subjects when derived from the two protocols. Ten male subjects of mixed athletic ability cycled to exhaustion on eight occasions in randomized order over a 3-wk period. Four trials were performed at differing constant power settings and four trials on differing ramp incremental rates. Both critical power and anaerobic work capacity were estimated for each subject by curve fitting of the ramp model and of three versions of the constant power model. After adjusting for inter-subject variability, no significant differences were detected between critical power estimates or between anaerobic work capacity estimates from any model formulation or from the two protocols. It is concluded that both the ramp and constant power protocols produce equivalent estimates for critical power and anaerobic work capacity.
Resumo:
We have examined MC1R variant allele frequencies in the general population of South East Queensland and in a collection of adolescent dizygotic and monozygotic twins and family members to define statistical associations with hair and skin color, freckling, and mole count. Results of these studies are consistent with a linear recessive allelic model with multiplicative penetrance in the inheritance of red hair. Four alleles, D84E, R151C, R160W, and D294H, are strongly associated with red hair and fair skin with multinomial regression analysis showing odds ratios of 63, 118, 50, and 94, respectively. An additional three low-penetrance alleles V60L, V92M, and R163Q have odds ratios 6, 5, and 2 relative to the wild-type allele. To address the cellular effects of MC1R variant alleles in signal transduction, we expressed these receptors in permanently transfected HEK293 cells. Measurement of receptor activity via induction of a cAMP-responsive luciferase reporter gene found that the R151C and R160W receptors were active in the presence of NDP-MSH ligand, but at much reduced levels compared with that seen with the wild-type receptor. The ability to stimulate phosphorylation of the cAMP response element binding protein (CREB) transcription factor was also apparent in all stimulated MC1R variant allele-expressing HEK293 cell extracts as assessed by immunoblotting. In contrast, human melanoma cell lines showed wide variation in the their ability to undergo cAMP-mediated CREB phosphorylation. Culture of human melanocytes of known MC1R genotype may provide the best experimental approach to examine the functional consequences for each MC1R variant allele. With this objective, we have established more than 300 melanocyte cell strains of defined MC1R genotype.
Resumo:
Over two thousand years the Christian Church identified a wider range and a greater number of heresies than most other religions and, when secular authorities did not protected the heretics, took drastic measures to persuade the heretic to recant and to extirpate the false doctrine. Heresy, of course, is a word like a box [End Page 201] that at different times may hold many different ideas and so some articles are dealing with definitions and identifications that are not the same. The editors suggest that the articles show a profound change in culture in the eighteenth century which means that present day scholars can barely imagine the mind-set that produced medieval attitudes to heresy. This is the task some of the authors have set themselves while others seek to explain how the change came about as part of the historical search for truth.
Resumo:
Six of the short dietary questions used in the 1995 National Nutrition Survey (see box below) were evaluated for relative validity both directly and indirectly and for consistency, by documenting the differences in mean intakes of foods and nutrients as measured on the 24-hour recall, between groups with different responses to the short questions. 1. Including snacks, how many times do you usually have something to eat in a day including evenings? 2. How many days per week do you usually have something to eat for breakfast? 3. In the last 12 months, were there any times that you ran out of food and couldn’t afford to buy more? 4. What type of milk do you usually consume? 5. How many serves of vegetables do you usually eat each day? (a serve = 1/2 cup cooked vegetables or 1 cup of salad vegetables) 6. How many serves of fruit do you usually eat each day? (a serve = 1 medium piece or 2 small pieces of fruit or 1 cup of diced pieces) These comparisons were made for males and females overall and for population sub-groups of interest including: age, socio-economic disadvantage, region of residence, country of birth, and BMI category. Several limitations to this evaluation of the short questions, as discussed in the report, need to be kept in mind including: · The method for comparison available (24-hour recall) was not ideal (gold standard); as it measures yesterday’s intake. This limitation was overcome by examining only mean differences between groups of respondents, since mean intake for a group can provide a reasonable approximation for ‘usual’ intake. · The need to define and identify, post-hoc, from the 24-hour recall the number of eating occasions, and occasions identified by the respondents as breakfast. · Predetermined response categories for some of the questions effectively limited the number of categories available for evaluation. · Other foods and nutrients, not selected for this evaluation, may have an indirect relationship with the question, and might have shown stronger and more consistent responses. · The number of responses in some categories of the short questions eg for food security may have been too small to detect significant differences between population sub-groups. · No information was available to examine the validity of these questions for detecting differences over time (establishing trends) in food habits and indicators of selected nutrient intakes. By contrast, the strength of this evaluation was its very large sample size, (atypical of most validation studies of dietary assessment) and thus, the opportunity to investigate question performance in a range of broad population sub-groups compared with a well-conducted, quantified survey of intakes. The results of the evaluation are summarised below for each of the questions and specific recommendations for future testing, modifications and use provided for each question. The report concludes with some general recommendations for the further development and evaluation of short dietary questions.
Resumo:
Mutations in the exons of the cyclin-dependent kinase inhibitor gene CDKN2A are melanoma-predisposition alleles which have high penetrance, although they have low population frequencies. In contrast, variants of the melanocortin-1 receptor gene, MC1R, confer much lower melanoma risk but are common in European populations. Fifteen Australian CDKN2A mutation-carrying melanoma pedigrees were assessed for MC1R genotype, to test for possible modifier effects on melanoma risk. A CDKN2A mutation in the presence of a homozygous consensus MC1R genotype had a raw penetrance of 50%, with a mean age at onset of 58.1 years. When an MC1R variant allele was also present, the raw penetrance of the CDKN2A mutation increased to 84%, with a mean age at onset of 37.8 years (P=0.1). The presence of a CDKN2A mutation gave a hazard ratio of 13.35, and the hazard ratio of 3.72 for MC1R variant alleles was also significant. The impact of MC1R variants on risk of melanoma was mediated largely through the action of three common alleles, Arg151Cys, Arg160Trp, and Asp294His, that have previously been associated with red hair, fair skin, and skin sensitivity to ultraviolet light.