52 resultados para Biology, General|Biology, Genetics|Chemistry, Biochemistry


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The gene content of a mitochondrial (mt) genome, i.e., 37 genes and a large noncoding region (LNR), is usually conserved in Metazoa. The arrangement of these genes and the LNR is generally conserved at low taxonomic levels but varies substantially at high levels. We report here a variation in mt gene content and gene arrangement among chigger mites of the genus Leptotrombidium. We found previously that the mt genome of Leptotrombidium pallidum has an extra gene for large-subunit rRNA (rrnL), a pseudo-gene for small-subunit rRNA (PrrnS), and three extra LNRs, additional to the 37 genes and an LNR typical of Metazoa. Further, the arrangement of mt genes of L. pallidum differs drastically from that of the hypothetical ancestor of the arthropods. To find to what extent the novel gene content and gene arrangement occurred in Leptotrombidium, we sequenced the entire or partial mt genomes of three other species, L. akamushi, L. deliense, and L. fletcheri. These three species share the arrangement of all genes with L. pallidum, except trnQ (for tRNA-glutamine). Unlike L. pallidum, however, these three species do not have extra rrnL or PrrnS and have only one extra LNR. By comparison between Leptotrombidium species and the ancestor of the arthropods, we propose that (1) the type of mt genome present in L. pallidum evolved from the type present in the other three Leptotrombidium species, and (2) three molecular mechanisms were involved in the evolution of mt gene content and gene arrangement in Leptotrombidium species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

TSLC1 (tumor suppressor in lung cancer-1, IGSF4) encodes a member of the immunoglobulin superfamily molecules, which is involved in cell-cell adhesion. TSLC1 is connected to the actin cytoskeleton by DAL-1 (differentially expressed in adenocarcinoma of the lung-1, EPB41L3) and it directly associates with MPP3, one of the human homologues of a Drosophila tumor suppressor gene, Discs large. Recent data suggest that aberrant promoter methylation is important for TSLC1 inactivation in lung carcinomas. However, little is known about the other two genes in this cascade, DAL-1 and MPP3. Thus, we investigated the expression and methylation patterns of these genes in lung cancer cell lines, primary lung carcinomas and nonmalignant lung tissue samples. By reverse transcription-polymerase chain reaction, loss of TSLC1 expression was observed in seven of 16 (44%) non-small-cell lung cancer (NSCLC) cell lines and in one of 11 (9%) small-cell lung cancer (SCLC) cell lines, while loss of DAL- 1 expression was seen in 14 of 16 (87%) NSCLC cell lines and in four of 11 (36%) SCLC cell lines. By contrast, MPP3 expression was found in all tumor cell lines analysed. Similar results were obtained by microarray analysis. TSLC1 methylation was seen in 13 of 39 (33%) NSC LC cell lines, in one of 11 (9%) SCLC cell lines and in 100 of 268 (37%) primary NSCLCs. DAL-1 methylation was observed in 17 of 39 (44%) NSCLC cell lines, in three of 11 (27%) SCLC cell lines and in 147 of 268 (55%) primary NSCLCs. In tumors of NSCLC patients with stage II-III disease, DAL-1 methylation was seen at a statistically significant higher frequency compared to tumors of patients with stage I disease. A significant correlation between loss of expression and methylation of the genes in lung cancer cell lines was found. Overall, 65% of primary NSCLCs had either TSLC1 or DAL-1 methylated. Methylation of one of these genes was detected in 59% of NSCLC cell lines; however, in SCLC cell lines, methylation was much less frequently observed. The majority of nonmalignant lung tissue samples was not TSLC1 and DAL-1 methylated. Re-expression of TSLC1 and DAL-1 was seen after treatment of lung cancer cell lines with 5-aza-2$-deoxy-cytidine. Our results suggest that methylation of TSLC1 and/or DAL-1, leading to loss of their expression, is an important event in the pathogenesis of NSCLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite our detailed characterization of the human genome at the level of the primary DNA sequence, we are still far from understanding the molecular events underlying phenotypic variation. Epigenetic modifications to the DNA sequence and associated chromatin are known to regulate gene expression and, as such, are a significant contributor to phenotype. Studies of inbred mice and monozygotic twins show that variation in the epigenotype can be seen even between genetically identical individuals and that this, in some cases at least, is associated with phenotypic differences. Moreover, recent evidence suggests that the epigenome can be influenced by the environment and these changes can last a lifetime. However, we also know that epigenetic states in real-time are in continual flux and, as a result, the epigenome exhibits instability both within and across generations. We still do not understand the rules governing the establishment and maintenance of the epigenotype at any particular locus. The underlying DNA sequence itself and the sequence at unlinked loci (modifier loci) are certainly involved. Recent support for the existence of transgenerational epigenetic inheritance in mammals suggests that the epigenetic state of the locus in the previous generation may also play a role. Over the next decade, many of these processes will be better understood, heralding a greater capacity for us to correlate measurable molecular marks with phenotype and providing the opportunity for improved diagnosis and presymptomatic healthcare.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show that the mutant Huntington's disease (HD) protein (mhtt) specifically inhibits endocytosis in primary striatal neurons. Unexpectedly, mhtt does not inhibit clathrin-dependent endocytosis as was anticipated based on known interacting partners. Instead, inhibition occurs through a non-clathrin, caveolar-related pathway. Expression of mhtt inhibited internalization of BODIPY-lactosylceramide (LacCer), which is internalized by a caveolar-related mechanism. In contrast, endocytosis of Alexa Fluor 594-transferrin (Tfn) and epidermal growth factor, internalized through clathrin pathway, was unaffected by mhtt expression. Caveolin-1 (cav1), the major structural protein of caveolae binds cholesterol and is responsible for its trafficking inside cells. Mhtt interacts with cav-1 and caused a striking accumulation of intracellular cholesterol. Cholesterol accumulated in cultured neurons expressing mhtt in vitro and in brains of mhtt-expressing animals in vivo, and was observed after induction of mhtt expression in PC-12 cell lines. The accumulation occurred only when mhtt and cav1 were simultaneously expressed in cells. Knockdown of cav1 in mhtt-expressing neurons blocked cholesterol accumulation and restored LacCer endocytosis. Thus, mhtt and cav1 functionally interact to cause both cellular defects. These data provide the first direct link between mhtt and caveolar-related endocytosis and also suggest a possible mechanism for HD neurotoxicity where cholesterol homeostasis is perturbed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The constancy of phenotypic variation and covariation is an assumption that underlies most recent investigations of past selective regimes and attempts to predict future responses to selection. Few studies have tested this assumption of constancy despite good reasons to expect that the pattern of phenotypic variation and covariation may vary in space and time. We compared phenotypic variance-covariance matrices (P) estimated for Populations of six species of distantly related coral reef fishes sampled at two locations on Australia's Great Barrier Reef separated by more than 1000 km. The intraspecific similarity between these matrices was estimated using two methods: matrix correlation and common principal component analysis. Although there was no evidence of equality between pairs of P, both statistical approaches indicated a high degree of similarity in morphology between the two populations for each species. In general, the hierarchical decomposition of the variance-covariance structure of these populations indicated that all principal components of phenotypic variance-covariance were shared but that they differed in the degree of variation associated with each of these components. The consistency of this pattern is remarkable given the diversity of morphologies and life histories encompassed by these species. Although some phenotypic instability was indicated, these results were consistent with a generally conserved pattern of multivariate selection between populations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Orientational fluorophores have been a useful tool in physical chemistry, biochemistry, and more recently structural biology due to the polarized nature of the light they emit and that fact that energy can be transferred between them. We present a practical scheme in which measurements of the intensity of emitted fluorescence can be used to determine limits on the mean and distribution of orientation of the absorption transition moment of membrane-bound. uorophores. We demonstrate how information about the orientation of. uorophores can be used to calculate the orientation factor k(2) required for use in FRET spectroscopy. We illustrate the method using images of AlexaFluor probes bound to MscL mechanosensitive transmembrane channel proteins in spherical liposomes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sox8 is a member of the Sox family of developmental transcription factor genes and is closely related to Sox9, a critical gene involved in mammalian sex determination and differentiation. Both genes encode proteins with the ability to bind similar DNA target sequences, and to activate transcription in in vitro assays. Expression studies indicate that the two genes have largely overlapping patterns of activity during mammalian embryonic development. A knockout of Sox8 in mice has no obvious developmental phenotype, suggesting that the two genes are able to act redundantly in a variety of developmental contexts. In particular, both genes are expressed in the developing Sertoli cell lineage of the developing testes in mice, and both proteins are able to activate transcription of the gene encoding anti-Mullerian hormone (AMH), through synergistic action with steroidogenic factor I (SF1). We have hypothesized that Sox8 may substitute for Sox9 in species where Sox9 is expressed too late to be involved in sex determination or regulation of Amh expression. However, our studies involving the red-eared slider turtle indicate that Sox8 is expressed at similar levels in males and females throughout the sex-determining period, suggesting that Sox8 is neither a transcriptional regulator for Amh, nor responsible for sex determination or gonad differentiation in that species. Similarly, Sox8 is not expressed in a sexually dimorphic pattern during gonadogenesis in the chicken. Since a functional role(s) for Sox8 is implied by its conservation during evolution, the significance of Sox8 for sexual and other aspects of development will need to be uncovered through more directed lines of experimentation. Copyright (C) 2003 S. Karger AG, Basel.