109 resultados para Adaptive methods
Resumo:
The acceptance-probability-controlled simulated annealing with an adaptive move generation procedure, an optimization technique derived from the simulated annealing algorithm, is presented. The adaptive move generation procedure was compared against the random move generation procedure on seven multiminima test functions, as well as on the synthetic data, resembling the optical constants of a metal. In all cases the algorithm proved to have faster convergence and superior escaping from local minima. This algorithm was then applied to fit the model dielectric function to data for platinum and aluminum.
Resumo:
Feature selection is one of important and frequently used techniques in data preprocessing. It can improve the efficiency and the effectiveness of data mining by reducing the dimensions of feature space and removing the irrelevant and redundant information. Feature selection can be viewed as a global optimization problem of finding a minimum set of M relevant features that describes the dataset as well as the original N attributes. In this paper, we apply the adaptive partitioned random search strategy into our feature selection algorithm. Under this search strategy, the partition structure and evaluation function is proposed for feature selection problem. This algorithm ensures the global optimal solution in theory and avoids complete randomness in search direction. The good property of our algorithm is shown through the theoretical analysis.
Resumo:
Coastal wetlands are dynamic and include the freshwater-intertidal interface. In many parts of the world such wetlands are under pressure from increasing human populations and from predicted sea-level rise. Their complexity and the limited knowledge of processes operating in these systems combine to make them a management challenge.Adaptive management is advocated for complex ecosystem management (Hackney 2000; Meretsky et al. 2000; Thom 2000;National Research Council 2003).Adaptive management identifies management aims,makes an inventory/environmental assessment,plans management actions, implements these, assesses outcomes, and provides feedback to iterate the process (Holling 1978;Walters and Holling 1990). This allows for a dynamic management system that is responsive to change. In the area of wetland management recent adaptive approaches are exemplified by Natuhara et al. (2004) for wild bird management, Bunch and Dudycha (2004) for a river system, Thom (2000) for restoration, and Quinn and Hanna (2003) for seasonal wetlands in California. There are many wetland habitats for which we currently have only rudimentary knowledge (Hackney 2000), emphasizing the need for good information as a prerequisite for effective management. The management framework must also provide a way to incorporate the best available science into management decisions and to use management outcomes as opportunities to improve scientific understanding and provide feedback to the decision system. Figure 9.1 shows a model developed by Anorov (2004) based on the process-response model of Maltby et al. (1994) that forms a framework for the science that underlies an adaptive management system in the wetland context.