50 resultados para AORTIC ENDOTHELIAL-CELLS


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Caveolae and their proteins, the caveolins, transport macromolecules; compartmentalize signalling molecules; and are involved in various repair processes. There is little information regarding their role in the pathogenesis of significant renal syndromes such as acute renal failure (ARF). In this study, an in vivo rat model of 30 min bilateral renal ischaemia followed by reperfusion times from 4 h to 1 week was used to map the temporal and spatial association between caveolin-1 and tubular epithelial damage (desquamation, apoptosis, necrosis). An in vitro model of ischaemic ARF was also studied, where cultured renal tubular epithelial cells or arterial endothelial cells were subjected to injury initiators modelled on ischaemia-reperfusion (hypoxia, serum deprivation, free radical damage or hypoxia-hyperoxia). Expression of caveolin proteins was investigated using immunohistochemistry, immunoelectron microscopy, and immunoblots of whole cell, membrane or cytosol protein extracts. In vivo, healthy kidney had abundant caveolin-1 in vascular endothelial cells and also some expression in membrane surfaces of distal tubular epithelium. In the kidneys of ARF animals, punctate cytoplasmic localization of caveolin-1 was identified, with high intensity expression in injured proximal tubules that were losing basement membrane adhesion or were apoptotic, 24 h to 4 days after ischaemia-reperfusion. Western immunoblots indicated a marked increase in caveolin-1 expression in the cortex where some proximal tubular injury was located. In vitro, the main treatment-induced change in both cell types was translocation of caveolin-1 from the original plasma membrane site into membrane-associated sites in the cytoplasm. Overall, expression levels did not alter for whole cell extracts and the protein remained membrane-bound, as indicated by cell fractionation analyses. Caveolin-1 was also found to localize intensely within apoptotic cells. The results are indicative of a role for caveolin-1 in ARF-induced renal injury. Whether it functions for cell repair or death remains to be elucidated. Copyright (C) 2003 John Wiley Sons, Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Intraerythrocytic bodies identified as haemogregarine gamonts were found in 29% of 97 brown tree snakes (Boiga irregularis) examined during a haematological survey of reptiles in Australasia during 1994-1998. The morphological characteristics of the parasites were consistent with those of Haemogregarina boigae Mackerras, 1961, although the gamonts were slightly larger and lacked red caps but contained distinctive polar grey capsules. Gamonts did not distend host cells but laterally displaced their nuclei. They were contained within parasitophorous vacuoles and possessed typical apicomplexan organelles, including a conoid, polar rings, rhoptries and micronemes. Schizonts producing up to 30 merozoites were detected in endothelial cells of the lungs of 11 snakes. The absence of erythrocytic schizogony suggests the parasites belong to the genus Hepatozoon. Electron microscopy also revealed the presence of curious encapsulated organisms in degenerating erythrocytes. These stages did not possess apical complex organelles and were surrounded by thick walls containing circumferential junctions and interposed strips reminiscent of oocyst sutures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

VCAM-1 (vascular cell adhesion molecule-1) and Sox18 are involved in vascular development. VCAM-1 is an important adhesion molecule that is expressed on endothelial cells and has a critical role in endothelial activation, inflammation, lymphatic pathophysiology, and atherogenesis. The Sry-related high mobility group box factor Sox18 has previously been implicated in endothelial pathologies. Mutations in human and mouse Sox18 leads to hypotrichosis and lymphedema. Furthermore, both Sox18 and VCAM-1 have very similar spatio-temporal patterns of expression, which is suggestive of crosstalk. We use biochemical techniques, cell culture systems, and the ragged opossum (RaOP) mouse model with a naturally occurring mutation in Sox18 to demonstrate that VCAM-1 is an important target of Sox18. Transfection, site-specific mutagenesis, and gel shift analyses demonstrated that Sox18 directly targeted and trans-activated VCAM-1 expression. Importantly, the naturally occurring Sox18 mutant attenuates the expression and activation of VCAM-1 in vitro. Furthermore, in vivo quantitation of VCAM-1 mRNA levels in wild type and RaOP mice demonstrates that RaOP animals show a dramatic and significant reduction in VCAM-1 mRNA expression in lung, skin, and skeletal muscle. Our observation that the VCAM-1 gene is an important target of SOX18 provides the first molecular insights into the vascular abnormalities in the mouse mutant ragged and the human hypotrichosis-lymphedematelangiectasia disorder.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Until recently, glycosylation of proteins in prokaryotes was regarded as uncommon and thought to be limited to special cases such as S-layer proteins and some archeal outer membrane proteins. Now, there are an increasing number of reports of bacterial proteins that are glycosylated. Pilin of pathogenic Neisseria is one of the best characterised post-translation ally modified bacterial proteins, with four different types of modifications reported, including a novel glycosylation. Pilin monomers assemble to form pilus fibres, which are long protein filaments that protrude from the surface of bacterial cells and are key virulence factors. To aid in the investigation of these modifications, pure pilin is required. A number of pilin purification methods have been published, but none are appropriate for the routine purification of pilin from many different isolates. This study describes a novel, rapid, and simple method of pilin purification from Neisseria meningitidis C311#3, which facilitates the production of consistent quantities of pure, native pilin. A 6 x histidine tag was fused to the C-terminus of the pilin subunit structural gene, pilE, via homologous recombination placing the 6 x histidine-tagged allele in the chromosome of N. meningitidis C311#3. Pilin was purified under non-denaturing conditions via a two-step process using immobilised metal affinity chromatography (IMAC), followed by dye affinity chromatography. Analysis of the purified pilin confirmed that it retained both of the post-translational modifications examined. This novel approach may prove to be a generally applicable method for purification and analysis of post-translationally modified proteins in bacteria. (C) 2003 Elsevier Science (USA). All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pili of Neisseria meningitidis are a key virulence factor, being the major adhesin of this capsulate organism and contributing to specificity for the human host. Pili are post-translationally modified by addition of either an O-linked trisaccharide, Gal (beta1-4) Gal (alpha1-3) 2,4-diacetamido-2,4,6-trideoxyhexose or an O-linked disaccharide Gal (alpha1,3) GlcNAc. The role of these structures in meningococcal pathogenesis has not been resolved. In previous studies we identified two separate genetic loci, pglA and pglBCD, involved in pilin glycosylation. Putative functions have been allocated to these genes; however, there are not enough genes to account for the complete biosynthesis of the described structures, suggesting additional genes remain to be identified. In addition, it is not known why some strains express the trisaccharide structure and some the disaccharide structure. In order to find additional genes involved in the biosynthesis. of these structures, we used the recently published group A strain Z2491 and group B strain MC58 Neisseria meningitidis genomes and the unfinished Neisseria meningitidis group C strain FAM18 and Neisseria gonorrhoeae strain FA1090 genomes to identify novel genes involved in pilin glycosylation, based on homology to known oligosaccharide biosynthetic genes. We identified a new gene involved in pilin glycosylation designated pglE and examined four additional genes pgIB/B2, pglF, pglG and pglH. A strain survey revealed that pglE and pglF were present in each strain examined. The pglG, pglH and pgIB2 polymorphisms were not found in strain C311#3 but were present in a large number of clinical isolates. Insertional mutations were constructed in pglE and pglF in N. meningitidis strain C311#3, a strain with well-defined lipopolysaccharide (LPS) and pilin-linked glycan structures. Increased gel migration of the pilin subunit molecules of pglE and pglF mutants was observed by Western analysis, indicating truncation of the trisaccharide structure. Antisera specific for the C311#3 trisaccharide failed to react with pilin from these pglE and pglF mutants. GC-MS analysis of the sugar composition of the pglE mutant showed a reduction in galactose compared with C311#3 wild type. Analysis of amino acid sequence homologies has suggested specific roles for pglE and pglF in the biosynthesis of the trisaccharide structure. Further, we present evidence that pglE, which contains heptanucleotide repeats, is responsible for the phase variation between trisaccharide and disaccharide structures in strain C311#3 and other strains. We also present evidence that pglG, pglH and pgIB2 are potentially phase variable.