274 resultados para 779904 Control of pests and exotic species
Resumo:
The role of mutualisms in contributing to species invasions is rarely considered, inhibiting effective risk analysis and management options. Potential ecological consequences of invasion of non-native pollinators include increased pollination and seed set of invasive plants, with subsequent impacts on population growth rates and rates of spread. We outline a quantitative approach for evaluating the impact of a proposed introduction of an invasive pollinator on existing weed population dynamics and demonstrate the use of this approach on a relatively data-rich case study: the impacts on Cytisus scoparius (Scotch broom) from proposed introduction of Bombus terrestris. Three models have been used to assess population growth (matrix model), spread speed (integrodifference equation), and equilibrium occupancy (lattice model) for C. scoparius. We use available demographic data for an Australian population to parameterize two of these models. Increased seed set due to more efficient pollination resulted in a higher population growth rate in the density-independent matrix model, whereas simulations of enhanced pollination scenarios had a negligible effect on equilibrium weed occupancy in the lattice model. This is attributed to strong microsite limitation of recruitment in invasive C. scoparius populations observed in Australia and incorporated in the lattice model. A lack of information regarding secondary ant dispersal of C. scoparius prevents us from parameterizing the integrodifference equation model for Australia, but studies of invasive populations in California suggest that spread speed will also increase with higher seed set. For microsite-limited C. scoparius populations, increased seed set has minimal effects on equilibrium site occupancy. However, for density-independent rapidly invading populations, increased seed set is likely to lead to higher growth rates and spread speeds. The impacts of introduced pollinators on native flora and fauna and the potential for promoting range expansion in pollinator-limited 'sleeper weeds' also remain substantial risks.
Resumo:
The response of generalist egg parasitoids to alternative natural hosts that are present simultaneously is not well known. We investigated the behavior of Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae) in relation to two field hosts Helicoverpa armigera Hubner and Spodoptera litura Fabricius, in choice and no choice tests. We quantified the effects of natal host species and post-emergence adult age on the oviposition preference of the parasitoids. H. armigera eggs were consistently preferred over S. litura eggs, regardless of the natal host and adult age. When only S. litura eggs were available as hosts, they were parasitized at statistically similar rates to H. armigera eggs (average of 17 +/- 2.7 vs. 13 +/- 3.0, H. armigera to S. litura). The adult lifespan and lifetime fecundity of T. pretiosum were variable but were affected by natal host species and/or host species to which they were exposed. Mean lifespan and fecundity of parasitoids that had developed in H. armigera eggs and were exposed to H. armigera eggs for oviposition were 13.9 +/- 1.8 days and 98.7 +/- 11.0 adult offspring. By contrast, those that developed in S. litura eggs and were exposed to S. litura eggs for oviposition lived for 7 +/- 0.9 days and produced 53.8 +/- 8.0 adult offspring. The ovigeny index (OI) was significantly lower in the parasitoids exposed to H. armigera eggs than in those exposed to S. litura eggs, regardless of the natal host, indicating that H. armigera eggs sustain the adult parasitoids better than S. litura eggs. These results are used to predict parasitoid behavior in the field when both hosts are available. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
Serious infestations of Helicoverpa punctigera are experienced yearly in the eastern cropping regions of Australia. Regression analysis was used to determine whether the size of the first generation in spring (G(1)), which is comprised mostly of immigrants from inland Australia, was related to monthly rainfall in inland winter breeding areas. Data from two long series of light-trap catches at Narrabri in New South Wales (NSW) and Turretfield in South Australia (SA) were used in the analyses. The size of G1 at Narrabri in each year was significantly regressed on the amount of rainfall in western Queensland and NSW in May and June. The size of G1 at Turretfield each year was significantly regressed on the amount of rain in May, June and July in western Queensland and NSW and also in the desert of central Western Australia. Low r(2) values of the regressions suggest that rainfall data for more sites, as well as biological and other physical factors, such as temperature, evaporation, and prevailing wind systems, may need to be included to improve forecasts of the potential magnitude of the infestations in coastal cropping regions.
Resumo:
The use of long-term forecasts of pest pressure is central to better pest management. We relate the Southern Oscillation Index (SOI) and the Sea Surface Temperature (SST) to long-term light-trap catches of the two key moth pests of Australian agriculture, Helicoverpa punctigera (Wallengren) and H. armigera (Hubner), at Narrabri, New South Wales over 11 years, and for H. punctigera only at Turretfield, South Australia over 22 years. At Narrabri, the size of the first spring generation of both species was significantly correlated with the SOI in certain months, sometimes up to 15 months before the date of trapping. Differences in the SOI and SST between significant months were used to build composite variables in multiple regressions which gave fitted values of the trap catches to less than 25% of the observed values. The regressions suggested that useful forecasts of both species could be made 6-15 months ahead. The influence of the two weather variables on trap catches of H. punctigera at Turretfield were not as strong as at Narrabri, probably because the SOI was not as strongly related to rainfall in southern Australia as it is in eastern Australia. The best fits were again given by multiple regressions with SOI plus SST variables, to within 40% of the observed values. The reliability of both variables as predictors of moth numbers may be limited by the lack of stability in the SOI-rainfall correlation over the historical record. As no other data set is available to test the regressions, they can only be tested by future use. The use of long-term forecasts in pest management is discussed, and preliminary analyses of other long sets of insect numbers suggest that the Southern Oscillation Index may be a useful predictor of insect numbers in other parts of the world.
Resumo:
Single-unit electrophysiology was used to record the nerve impulses from the carbon dioxide receptors of female Queensland fruit flies, Bactrocera tryoni. The receptors responded to stimulation in a phasic-tonic manner and also had a period of inhibition of the nerve impulses after the end of stimulation, at high stimulus intensities. The cell responding to carbon dioxide was presented with a range of environmental odorants and found to respond to methyl butyrate and 2-butanone. The coding characteristics of the carbon dioxide cell and the ability to detect other odorants are discussed, with particular reference to the known behavior of the fly.
Resumo:
Early development and metamorphosis of Reniera sp., a haplosclerid demosponge, have been examined to determine how gastrulation occurs in this species, and whether there is an inversion of the primary germ layers at metamorphosis. Embryogenesis occurs by unequal cleavage of blastomeres to form a solid blastula consisting micro- and macromeres; multipolar migration of the micromeres to the surface of the embryo results in a bi-layered embryo and is interpreted as gastrulation. Polarity of the embryo is determined by the movement of pigment-containing micromeres to one pole of the embryo; this pole later becomes the posterior pole of the swimming larva. The bi-layered larva has a fully differentiated monociliated outer cell layer, and a solid interior of various cell types surrounded by dense collagen. The pigmented cells at the posterior pole give rise to long cilia that are capable of responding to environmental stimuli. Larvae settle on their anterior pole. Fluorescent labeling of the monociliated outer cell layer with a cell-lineage marker (CMFDA) demonstrates that the monociliated cells resorb their cilia, migrate inwards, and transdifferentiate into the choanocytes of the juvenile sponge, and into other amoeboid cells. The development of the flagellated choanocytes and other cells in the juvenile from the monociliated outer layer of this sponge's larva is interpreted as the dedifferentiation of fully differentiated larval cells-a process seen during the metamorphosis of other ciliated invertebrate larvae-not as inversion of the primary germ layers. These results suggest that the sequences of development in this haplosclerid demosponge are not very different than those observed in many cnidarians.
Resumo:
Third-instar nymphs of the Australian assassin bug, Pristhesancus plagipennis (Walker), were released into cotton plots at two release densities and two crop growth stages to test their biological control potential. Release rates of 2 and 5 nymphs per metre row resulted in field populations of 0.51 and 1.38 nymphs per metre row, respectively, indicating that over 70% of nymphs died or emigrated within two weeks of release. Effective release rates of 1.38 nymphs per metre row reduced the number of Helicoverpa spp. larvae in the plots for a 7-week period. Crop yields were significantly greater in the plots to which P. plagipennis nymphs were released, with the effective release rate of 1.38 nymphs per metre row providing equivalent yields as insecticide treated plots. The data suggest that P. plagipennis has the capacity to reduce Helicoverpa spp. larvae densities in cotton crops when augmented through inundative release.
Resumo:
A problem with augmenting predatory bugs through mass release is the logistical difficulty of delivering nymphs onto the foliage of field crops. In this paper we examine postrelease establishment and dispersal of the nymphs of the predatory bug Pristhesancus plagipennis on soybean, cotton and sunflower in an effort to devise an appropriate strategy for field release. The effects of predator stadia and release rates on field establishment and within-crop-canopy dispersal after hand release were recorded in soybean, cotton and sunflower. Field establishment improved with the release of more-developed nymphs, with third instars providing the most appropriate compromise between field hardiness and rearing cost. Increased nymphal density at the point of release had little effect on nymphal dispersal throughout the crop canopy. The patterns of nymphal dispersal observed on the three crops suggest that crop-canopy architecture may have an effect on the ability of nymphs to spread out postrelease, as nymphs dispersed poorly in cotton and sunflower compared to soybean. To overcome poor dispersal of nymphs after release, a mechanical release method, where nymphs were mixed with vermiculite and delivered onto a target crop through a spinning disk fertiliser spreader, was tested, and provided similar nymph establishment rates and dispersal patterns as releasing nymphs individually by hand. The implications of nymph dispersal and field hardiness in regard to inundative field release techniques are discussed.