125 resultados para 280000 Information, Computing and Communication Sciences
Resumo:
A major requirement for pervasive systems is to integrate context-awareness to support heterogeneous networks and device technologies and at the same time support application adaptations to suit user activities. However, current infrastructures for pervasive systems are based on centralized architectures which are focused on context support for service adaptations in response to changes in the computing environment or user mobility. In this paper, we propose a hierarchical architecture based on active nodes, which maximizes the computational capabilities of various nodes within the pervasive computing environment, while efficiently gathering and evaluating context information from the user's working environment. The migratable active node architecture employs various decision making processes for evaluating a rich set of context information in order to dynamically allocate active nodes in the working environment, perform application adaptations and predict user mobility. The active node also utilizes the Redundant Positioning System to accurately manage user's mobility. This paper demonstrates the active node capabilities through context-aware vertical handover applications.
Resumo:
These notes follow on from the material that you studied in CSSE1000 Introduction to Computer Systems. There you studied details of logic gates, binary numbers and instruction set architectures using the Atmel AVR microcontroller family as an example. In your present course (METR2800 Team Project I), you need to get on to designing and building an application which will include such a microcontroller. These notes focus on programming an AVR microcontroller in C and provide a number of example programs to illustrate the use of some of the AVR peripheral devices.
Resumo:
What is the minimal size quantum circuit required to exactly implement a specified n-qubit unitary operation, U, without the use of ancilla qubits? We show that a lower bound on the minimal size is provided by the length of the minimal geodesic between U and the identity, I, where length is defined by a suitable Finsler metric on the manifold SU(2(n)). The geodesic curves on these manifolds have the striking property that once an initial position and velocity are set, the remainder of the geodesic is completely determined by a second order differential equation known as the geodesic equation. This is in contrast with the usual case in circuit design, either classical or quantum, where being given part of an optimal circuit does not obviously assist in the design of the rest of the circuit. Geodesic analysis thus offers a potentially powerful approach to the problem of proving quantum circuit lower bounds. In this paper we construct several Finsler metrics whose minimal length geodesics provide lower bounds on quantum circuit size. For each Finsler metric we give a procedure to compute the corresponding geodesic equation. We also construct a large class of solutions to the geodesic equation, which we call Pauli geodesics, since they arise from isometries generated by the Pauli group. For any unitary U diagonal in the computational basis, we show that: (a) provided the minimal length geodesic is unique, it must be a Pauli geodesic; (b) finding the length of the minimal Pauli geodesic passing from I to U is equivalent to solving an exponential size instance of the closest vector in a lattice problem (CVP); and (c) all but a doubly exponentially small fraction of such unitaries have minimal Pauli geodesics of exponential length.
Resumo:
This article is a short introduction to and review of the cluster-state model of quantum computation, in which coherent quantum information processing is accomplished via a sequence of single-qubit measurements applied to a fixed quantum state known as a cluster state. We also discuss a few novel properties of the model, including a proof that the cluster state cannot occur as the exact ground state of any naturally occurring physical system, and a proof that measurements on any quantum state which is linearly prepared in one dimension can be efficiently simulated on a classical computer, and thus are not candidates for use as a substrate for quantum computation.
Resumo:
This paper is an expanded and more detailed version of the work [1] in which the Operator Quantum Error Correction formalism was introduced. This is a new scheme for the error correction of quantum operations that incorporates the known techniques - i.e. the standard error correction model, the method of decoherence-free subspaces, and the noiseless subsystem method - as special cases, and relies on a generalized mathematical framework for noiseless subsystems that applies to arbitrary quantum operations. We also discuss a number of examples and introduce the notion of unitarily noiseless subsystems.
Resumo:
In this Letter we numerically investigate the fault-tolerant threshold for optical cluster-state quantum computing. We allow both photon loss noise and depolarizing noise (as a general proxy for all local noise), and obtain a threshold region of allowed pairs of values for the two types of noise. Roughly speaking, our results show that scalable optical quantum computing is possible for photon loss probabilities < 3x10(-3), and for depolarization probabilities < 10(-4).
Resumo:
Quantum computers hold great promise for solving interesting computational problems, but it remains a challenge to find efficient quantum circuits that can perform these complicated tasks. Here we show that finding optimal quantum circuits is essentially equivalent to finding the shortest path between two points in a certain curved geometry. By recasting the problem of finding quantum circuits as a geometric problem, we open up the possibility of using the mathematical techniques of Riemannian geometry to suggest new quantum algorithms or to prove limitations on the power of quantum computers.