143 resultados para 110106 Medical Biochemistry: Proteins and Peptides (incl. Medical Proteomics)
Resumo:
The role of non-carbohydrate surface components of granular starch in determining gelatinisation behaviour has been tested by treatment of native starches with a range of extractants. Resulting washed starches were analysed for (bio)chemical, calorimetric and theological properties. Sodium dodecyl sulphate (SDS) was the most efficient extractant tested, and resulted in major changes to the subsequent theological properties of wheat and maize starches but not other starches. Three classes of starch granule swelling behaviour are identified: (i) rapid swelling (e.g. waxy maize, potato), (ii) slow swelling that can be converted to rapid swelling by extraction of surface proteins and lipids (e.g. wheat, maize), and (iii) limited swelling not affected by protein/lipid extraction (e.g. high amylose maize/potato). Comparison of a range of extractants suggests that all of protein, lipid and amylose are involved in restriction of swelling for wheat or maize starches. Treatment of starches with SDS leads to a residue at comparable (low) levels of SDS for all starches. C-13 NMR analysis shows that this SDS is present as a glucan inclusion complex, even for waxy maize starch. We infer that under the conditions used, glucan inclusion complexation of SDS is equally likely with amylopectin as with amylose. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Advances in molecular biology have given us a wide range of protein and peptide-based drugs that are unsuitable for oral delivery because of their high degree of first-pass metabolism. Though parenteral delivery is the obvious answer, for the successful development of commercial chronic and self-administration usage formulations it is not the ideal choice. Transdermal delivery is emerging as the biggest application target for these agents, however, the skin is extremely efficient at keeping out such large molecular weight compounds and therapeutic levels are never going to be realistically achieved by passive absorption. Physical enhancement mechanisms including: iontophoresis, electroporation, ultrasound, photomechanical waves, microneedles and jet-propelled particles are emerging as solutions to this topical delivery dilemma. Adding proteins and peptides to the list of other large molecular weight drugs with insufficient passive transdermal fluxes to be therapeutically useful, we have a collection of pharmacological agents waiting for efficient delivery methods to be introduced. This article reviews the current state of physical transdermal delivery technology, assesses the pros and cons of each technique and summarises the evidence-base of their drug delivery capabilities.
Resumo:
In recent years an increasing number of miniproteins containing an amide-cyclized backbone have been discovered. The cyclotide family is the largest group of such proteins and is characterized by a circular protein backbone and six conserved cysteine residues linked by disulfide bonds in a tight core of the molecule. These form a cystine knot in which an embedded ring formed by two of the disulfide bonds and the connecting backbone segment is threaded by a third disulfide bond. In the current study we have undertaken high resolution structural analysis of two prototypic cyclotides, kalata B1 and cycloviolacin O1, to define the role of the conserved residues in the sequence. We provide the first comprehensive analysis of the topological features in this unique family of proteins, namely rings (a circular backbone), twists (a cis-peptide bond in the Mobius cyclotides) and knots (a knotted arrangement of the disulfide bonds).
Resumo:
The cyclotides are a large family of plant proteins that have a cyclic backbone and a knotted arrangement of three conserved disulfide bonds. Despite the apparent complexity of their cystine knot motif it is possible to efficiently fold these proteins, as exemplified by oxidative folding studies on the prototypic cyclotide, kalata B1. This mini-review reports on the current understanding of the folding process in cyclotides. The synthesis and folding of these molecules paves the way for their application as stable molecular templates.
Resumo:
Cyclic peptides containing oxazole and thiazole heterocycles have been examined for their capacity to be used as scaffolds in larger, more complex, protein-like structures. Both the macrocyclic scaffolds and the supramolecular structures derived therefrom have been visualised by molecular modelling techniques. These molecules are too symmetrical to examine structurally by NMR spectroscopy. The cyclic hexapeptide ([Aaa-Thz](3), [Aaa-Oxz](3)) and cyclic octapeptide ([Aaa-Thz](4), [Aaa-Oxz](4)) analogues are composed of dipeptide surrogates (Aaa: amino acid, Thz: thiazole, Oxz: oxazole) derived from intramolecular condensation of cysteine or serine/threonine side chains in dipeptides like Aaa-Cys, Aaa-Ser and Aaa-Thr. The five-membered heterocyclic rings, like thiazole, oxazole and reduced analogues like thiazoline, thiazolidine and oxazoline have profound influences on the structures and bioactivities of cyclic peptides derived therefrom. This work suggests that such constrained cyclic peptides can be used as scaffolds to create a range of novel protein-like supramolecular structures (e.g. cylinders, troughs, cones, multi-loop structures, helix bundles) that are comparable in size, shape and composition to bioactive surfaces of proteins. They may therefore represent interesting starting points for the design of novel artificial proteins and artificial enzymes. (C) 2002 Elsevier Science Inc. All rights reserved.
Resumo:
The vitamin D receptor (VDR) mediates the effects of 1,25(OH)(2)D-3, the active form of vitamin D. The human VDRB1 isoform differs from the originally described VDR by an N-terminal extension of 50 amino acids. Here we investigate cell-, promoter-, and ligand-specific transactivation by the VDRB1 isoform. Transactivation by these isoforms of the cytochrome P450 CYP24 promoter was compared in kidney (HEK293 and COS1), tumor-derived colon (Caco-2, LS174T, and HCT15), and mammary (HS578T and MCF7) cell lines. VDRB1 transactivation in response to 1,25(OH)(2)D-3 was greater in Cost and HCT15 cells (145%), lower in HEK293 and Caco-2 cells (70-85%) and similar in other cell lines tested. By contrast, on the cytochrome P450 CYP3A4 promoter, 1,25(OH)(2)D-3-induced VDRB1 transactivation was significantly lower than VDRA in Caco-2 (68%), but comparable to VDRA in HEK293 and COS1 cells. Ligand-dependence of VDRB1 differential transactivation was investigated using the secondary bile acid lithocholic acid (LCA). On the CYP24 promoter LCA-induced transactivation was similar for both isoforms in COS1, whereas in Caco-2 and HEK293 cells VDRB1 was less active. On the CYP3A4 promoter, LCA activation of VDRB1 was comparable to VDRA in all the cell lines tested. Mutational analysis indicated that both the 1,25(OH)(2)D-3 and LCA-regulated activities of both VDR isoforms required a functional ligand-dependent activation function (AF-2) domain. In gel shift assays VDR:DNA complex formation was stronger in the presence of 1,25(OH)(2)D-3 than with LCA. These results indicate that regulation of VDRB1 transactivation activity is dependent on cellular context, promoter, and the nature of the ligand. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
The gastrointestinal tracts of multi-cellular blood-feeding parasites are targets for vaccines and drugs. Recently, recombinant vaccines that interrupt the digestion of blood in the hookworm gut have shown efficacy, so we explored the intestinal transcriptomes of the human and canine hookworms, Necator americanus and Ancylostoma caninum, respectively. We used Laser Microdissection Microscopy to dissect gut tissue from the parasites, extracted the RNA and generated cDNA libraries. A total of 480 expressed sequence tags were sequenced from each library and assembled into contigs, accounting for 268 N. americanus genes and 276 A. caninum genes. Only 17% of N. americanus and 36% of A. caninum contigs were assigned Gene Ontology classifications. Twenty-six (9.8%) N. americanus and 18 (6.5%) A. caninum contigs did not have homologues in any databases including dbEST-of these novel clones, seven N. americanus and three A. caninum contigs had Open Reading Frames with predicted secretory signal peptides. The most abundant transcripts corresponded to mRNAs encoding cholesterol-and fatty acid-binding proteins, C-type lectins, Activation-Associated Secretory Proteins, and proteases of different mechanistic classes, particularly astacin-like metallopeptidases. Expressed sequence tags corresponding to known and potential recombinant vaccines were identified and these included homologues of proteases, anti-clotting factors, defensins and integral membrane proteins involved in cell adhesion. (c) 2006 Australian Society for Parasitology Inc Published by Elsevier Ltd. All fights reserved.
Resumo:
Purple acid phosphatases are a family of binuclear metallohydrolases that have been identified in plants, animals and fungi. Only one isoform of similar to 35 kDa has been isolated from animals, where it is associated with bone resorption and microbial killing through its phosphatase activity, and hydroxyl radical production, respectively. Using the sensitive PSI-BLAST search method, sequences representing new purple acid phosphatase-like proteins have been identified in mammals, insects and nematodes. These new putative isoforms are closely related to the similar to 55 kDa purple acid phosphatase characterized from plants. Secondary structure prediction of the new human isoform further confirms its similarity to a purple acid phosphatase from the red kidney bean. A structural model for the human enzyme was constructed based on the red kidney bean purple acid phosphatase structure. This model shows that the catalytic centre observed in other purple acid phosphatases is also present in this new isoform. These observations suggest that the sequences identified in this study represent a novel subfamily of plant-like purple acid phosphatases in animals and humans. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The saliva of ticks (Suborder Ixodida) is critical to their survival as parasites. A tick bite should result in strong responses from the host defence systems (haemostatic, immune and inflammatory) but tick saliva appears to have evolved to counter these responses. We review current knowledge of tick saliva components, with emphasis on those molecules confirmed to be present in the secreted saliva but including some that have only been confirmed to be present in salivary glands. About 50 tick saliva proteins that are well described in the literature are discussed. These saliva components include enzymes, enzyme inhibitors, amine-binding proteins and cytokine homologues that act as anti-haemostatic, anti-inflammatory or immuno-modulatory agents. Sequence comparisons are illustrated. The importance of tick saliva and the significance of the findings to date are also discussed. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Tight junctions are directly involved in regulating the passage of ions and macromolecules (gate functions) in epithelial and endothelial cells. The modulation of these gate functions to transiently regulate the paracellular permeability of large solutes and ions could increase the delivery of pharmacological agents or gene transfer vectors. To reduce the inflammatory responses caused by tight junction-regulating agents, alternative strategies directly targeting specific tight junction proteins could prove to be less toxic to airway epithelia. The apical delivery of peptides corresponding to the first extracellular loop of occludin to transiently modulate apical paracellular flux has been demonstrated in intestinal epithelia. We hypothesized that apical application of these occludin peptides could similarly modulate tight junction permeability in airway epithelia. Thus, we investigated the effects of apically applied occludin peptide on the paracellular permeability of molecular tracers and viral vectors in well differentiated human airway epithelial cells. The effects of occludin peptide on cellular toxicity, tight junction protein expression and localization, and membrane integrity were also assessed. Our data showed that apically applied occludin peptide significantly reduced transepithelial resistance in airway epithelia and altered tight junction permeability in a concentration-dependent manner. These alterations enhanced the paracellular flux of dextrans as well as gene transfer vectors. The occludin peptide redistributed occludin but did not alter the expression or distribution of ZO-1, claudin-1, or claudin-4. These data suggest that specific targeting of occludin could be a better-suited alternative strategy for tight junction modulation in airway epithelial cells compared with current agents that modulate tight junctions.
Resumo:
Group A streptococcus (GAS) is responsible for causing many clinical complications including the relatively benign streptococcal pharyngitis and impetigo. However. if left untreated. these conditions may lead to more severe diseases such as rheumatic fever (RF) and rheumatic heart disease (RHD). These diseases exhibit high morbidity and mortality, Particularly in developing countries and in indigenous populations of affluent countries. Only ever occur following GAS infection, a vaccine offers Promise for their Prevention. As stich, we have investigated the Use of the lipid-core peptide (LCP) system for the development of multi-valent Prophylactic GAS vaccines. The current study has investigated the capacity of this system to adjuvant LIP to four different GAS peptide epitopes. Presented are the synthesis and immunological assessment of tetra-valent and tri-valent GAS LCP systems. We demonstrated their capacity to elicit systemic IgG antibody responses in B10.BR mice to all GAS peptide epitopes. The data also showed that the LCP systems Were self-adjuvanting. These findings are particularly encouraging for the development of multi-valent LCP-based GAS vaccines.