81 resultados para 091207 Metals and Alloy Materials
Resumo:
A magnesium alloy of eutectic composition (33 wt-'%Al) was directionally solidified in mild steel tubes at two growth rates, 32 and 580 mum s(-1,) in a temperature gradient between 10 and 20 K mm(-1). After directional solidification, the composition of each specimen varied dramatically, from 32'%Al in the region that had remained solid to 18%Al (32 mum s(-1) specimen) and 13%Al (580 mum s(-1) specimen) at the plane that had been quenched from the eutectic temperature. As the aluminium content decreased, the microstructure contained an increasing volume fraction of primary magnesium dendrites and the eutectic morphology gradually changed from lamellar to partially divorced. The reduction in aluminium content was caused by the growth of an Al-Fe phase ahead of the Mg-Al growth front. Most of the growth of the Al-Fe phase occurred during the remelting period before directional solidification. The thickness of the Al-Fe phase increased with increased temperature and time of contact with the molten Mg-Al alloy. (C) 2003 Maney Publishing.
Resumo:
It is generally accepted that growth of eutectic silicon in aluminium-silicon alloys occurs by a twin plane re-entrant edge (TPRE) mechanism. It has been proposed that modification of eutectic silicon by trace additions occurs due to a massive increase in the twin density caused by atomic effects at the growth interface. In this study, eutectic microstructures and silicon twin densities in samples modified by elemental additions of barium (Ba), calcium (Ca), yttrium (Y) and ytterbium (Yb) (elements chosen due to a near-ideal atomic radii for twinning) in an A356.0 alloy have been determined by optical microscopy, thermal analysis, X-ray diffractometry (XRD) and transmission electron microscopy (TEM). Addition of barium or calcium caused the silicon structure to transform to a fine fibrous morphology, while the addition of yttrium or ytterbium resulted in a refined plate-like eutectic structure. Twin densities in all modified samples are higher than in unmodified alloys, and there are no significant differences between fine fibrous modification (by Ba and Ca) and refined plate-like modification (by Y and Yb). The twin density in all modified samples is less than expected based on the predictions by the impurity induced twining model. Based on these results it is difficult to explain the modification with Ba, Ca, Y and Yb by altered twin densities alone.
Resumo:
The effects of boron and strontium interactions on the eutectic silicon in hypoeutectic Al-Si alloys have been studied. Samples were prepared from an AI-I 0 mass%Si base alloy with different Al-B additions, alone and in combination with strontium. In alloys containing no strontium, boron additions do not cause modification of the eutectic silicon, while in strontium containing alloys, boron additions reduce the level of modification of the eutectic silicon. Thermal analysis parameters and eutectic silicon microstructures were investigated with respect to the Sr to B ratio. In order to modify the eutectic silicon, a Sr/B ratio exceeding 0.4 is required.
Resumo:
Kikuchi diffraction was used to accurately determine the orientation relationship (OR) between Mg17Al12 precipitates and matrix in an AZ91D alloy. For both continuous and discontinuous precipitations, the Burgers OR and the Potter OR were equally observed. The lattice parameter of Mg17Al12 associated with the former is bigger than that of the latter. (C) 2002 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
The aim of this article is to demonstrate that the apparent controversy between the infinitesimal deformation (ID) approach and the phenomenological theory of martensitic transformations (PTMTs) in predicting the crystallographic characteristics of a martensitic transformation is entirely based on unjustified approximations associated with the way in which the ID calculations are performed. When applied correctly, the ID approach is shown to be absolutely identical to the PTMT. Nevertheless, there may be some advantages in using the ID approach. In particular, it is somewhat simpler than the PTMT; it is based on a physical concept that is easier to understand and, most important, it may provide a tool for investigating some of the features of martensitic transformations that have eluded explanation via the PTMT.
Resumo:
The flow stress in tensile and compressive deformation has been determined in cast Mg, for a wide range of grain sizes between 36 mum and 1.5 mm. The grain size was varied by alloying Mg with small amounts of Zr. It was found that the 0.2% offset flow stress, sigma(y) (MPa), varies with the grain size, d (m), as sigma(y) = 17.7 + 0.25 d(-1/2) in tension, while sigma(y) = -2.3 + 0.39 d(-1/2) in compression. Possible reasons for the difference between tension and compression are discussed.
Resumo:
The corrosion behaviour of die cast magnesium alloy AZ91D aged at 160degreesC was investigated. The corrosion rate of the alloy decreases with ageing time in the initial stages and then increases again at ageing times greater than 45 h. The dependence of the corrosion rate on ageing time can be related to the changes in microstructure and local composition during ageing. Precipitation of the beta phase (Mg17Al12) occurs exclusively along the grain boundaries during ageing. The beta phase acts as a barrier, resulting in a decreasing corrosion rate in the initial stages of ageing. In the later stages, the decreasing aluminium content of alpha grains makes the alpha matrix more active, causing an increase in the corrosion rate. Electrochemical testing results also confirm the combined effects of the changes in alpha and beta phases on the corrosion resistance of the aged die cast AZ91D alloy. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Selective laser sintering has been used to fabricate an aluminium alloy powder preform which is subsequently debound and infiltrated with a second aluminium alloy. This represents a new rapid manufacturing system for aluminium that can be used to fabricate large, intricate parts. The base powder is an alloy such as AA6061. The infiltrant is a binary or higher-order eutectic based on either Al-Cu or At-Si. To ensure that infiltration occurs without loss of dimensional precision, it is important that a rigid skeleton forms prior to infiltration. This can be achieved by the partial transformation of the aluminium to aluminium nitride. In order for this to occur throughout the component, magnesium powder must be added to the alumina support powder which surrounds the part in the furnace. The magnesium scavenges the oxygen and thereby creates a microclimate in which aluminium nitride can form. The replacement of the ionocovalent Al2O3 with the covalent AlN on the surface of the aluminium powders also facilitates wetting and thus spontaneous and complete infiltration. (C) 2004 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
The effect of iron on the grain refinement of high-purity Mg-3%Al and Mg-91%Al alloys has been investigated using anhydrous FeCl3 as an iron additive at 750degreesC in carbon-free aluminium titanite crucibles. It was shown that grain refinement was readily achievable for both alloys. Fe- and Al-rich intermetallic particles were observed in many magnesium grains. (C) 2004 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
A trace of beryllium can lead to dramatic grain coarsening in Mg-Al alloys at normal cooling rates. It is, however, unclear whether this effect applies to aluminium-free magnesium alloys or not. This work shows that a trace of beryllium also causes considerable grain coarsening in Mg-Zn, Mg-Ca, Mg-Ce and Mg-Nd alloys and hinders grain refinement of magnesium alloys by zirconium as well. (C) 2004 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Banded defects are often found in high-pressure die castings. These bands can contain segregation, porosity, and/or tears, and changing casting conditions and alloy are known to change the position and make-up of the bands. Due to the complex, dynamic nature of the high-pressure die-casting (HPDC) process, it is very difficult to study the effect of individual parameters on band formation. In the work presented here, bands of segregation similar to those found in cold-chamber HPDC aluminum alloys were found in laboratory gravity die castings. Samples were cast with a range of fraction solids from 0 to 0.3 and the effect of die temperature and external solid fraction on segregation bands was investigated. The results are considered with reference to the theological properties of the filling semisolid metal and a formation mechanism for bands is proposed by considering flow past a solidifying immobile wall layer.
Resumo:
The effect of increasing levels of silicon on the microstructure and creep properties of high-pressure die-cast Mg-Al-Si (AS) alloys has been investigated. The morphology of the Mg2Si phase in die-cast AS alloys was found to be a function of the silicon content. The Mg2Si particles in castings with up to 1.14 wt pct Si have a Chinese script morphology. For AS21 alloys with silicon contents greater than 1.4 wt pet Si (greater than the alpha-Mg2Si binary eutectic point), some Mg2Si particles have a coarse blocky shape. Increasing the silicon content above the eutectic level results in an increase in the number of coarse faceted Mg2Si particles in the microstructure. Creep rates at 100 hours were found to decrease with increasing silicon content in AS-type alloys. The decrease in creep rate was most dramatic for silicon contents up to 1.1 wt pct. Further additions of silicon of up to 2.64 wt pct also resulted in significant decreases in creep rate.