154 resultados para 090905 Photogrammetry and Remote Sensing
Resumo:
Sustainable management of coastal and coral reef environments requires regular collection of accurate information on recognized ecosystem health indicators. Satellite image data and derived maps of water column and substrate biophysical properties provide an opportunity to develop baseline mapping and monitoring programs for coastal and coral reef ecosystem health indicators. A significant challenge for satellite image data in coastal and coral reef water bodies is the mixture of both clear and turbid waters. A new approach is presented in this paper to enable production of water quality and substrate cover type maps, linked to a field based coastal ecosystem health indicator monitoring program, for use in turbid to clear coastal and coral reef waters. An optimized optical domain method was applied to map selected water quality (Secchi depth, Kd PAR, tripton, CDOM) and substrate cover type (seagrass, algae, sand) parameters. The approach is demonstrated using commercially available Landsat 7 Enhanced Thematic Mapper image data over a coastal embayment exhibiting the range of substrate cover types and water quality conditions commonly found in sub-tropical and tropical coastal environments. Spatially extensive and quantitative maps of selected water quality and substrate cover parameters were produced for the study site. These map products were refined by interactions with management agencies to suit the information requirements of their monitoring and management programs. (c) 2004 Elsevier Ltd. All rights reserved.
Mapping olive varieties and within-field spatial variability using high resolution quickbird imagery
Resumo:
Government agencies responsible for riparian environments are assessing the utility of remote sensing for mapping and monitoring environmental health indicators. The objective of this work was to evaluate IKONOS and Landsat-7 ETM+ imagery for mapping riparian vegetation health indicators in tropical savannas for a section of Keelbottom Creek, Queensland, Australia. Vegetation indices and image texture from IKONOS data were used for estimating percentage canopy cover (r2=0.86). Pan-sharpened IKONOS data were used to map riparian species composition (overall accuracy=55%) and riparian zone width (accuracy within 4 m). Tree crowns could not be automatically delineated due to the lack of contrast between canopies and adjacent grass cover. The ETM+ imagery was suited for mapping the extent of riparian zones. Results presented demonstrate the capabilities of high and moderate spatial resolution imagery for mapping properties of riparian zones, which may be used as riparian environmental health indicators
Resumo:
In this paper, we describe the evaluation of a method for building detection by the Dempster-Shafer fusion of LIDAR data and multispectral images. For that purpose, ground truth was digitised for two test sites with quite different characteristics. Using these data sets, the heuristic model for the probability mass assignments of the method is validated, and rules for the tuning of the parameters of this model are discussed. Further we evaluate the contributions of the individual cues used in the classification process to the quality of the classification results. Our results show the degree to which the overall correctness of the results can be improved by fusing LIDAR data with multispectral images.