871 resultados para Se Queensland
Resumo:
Lyngbya majuscula, a toxic cyanobacterium, was observed blooming during June-July (winter) 2002 in Shoalwater Bay, Queensland, Australia, an important feeding area for a large population of green turtles (Chelonia mydas). The bloom was mapped and extensive mats of L majuscula were observed overgrowing seagrass beds along at least 18 km of coast, and covering a surface area of more than I I km(2). Higher than average rainfall preceded the bloom and high water temperatures in the preceding summer may have contributed to the bloom. In bloom samples, lyngbyatoxin A (LA) was found to be present in low concentration (26 mu g kg(-1) (dry weight)), but debromoaplysiatoxin (DAT) was not detected. The diet of 46 green turtles was assessed during the bloom and L. majuscula was found in 51% of the samples, however, overall it contributed only 2% of the animals' diets. L. majuscula contribution to turtle diet was found to increase as the availability of the cyanobacterium increased. The bloom appeared to have no immediate impact on turtle body condition, however, the presence of a greater proportion of damaged seagrass leaves in diet in conjunction with decreases in plasma concentrations of sodium and glucose could suggest that the turtles may have been exposed to a Substandard diet as a result of the bloom. This is the first confirmed report of L. majuscula blooming in winter in Shoalwater Bay, Queensland, Australia and demonstrates that turtles consume the toxic cyanobacterium in the wild, and that they are potentially exposed to tumour promoting compounds produced by this organism. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A remarkably diverse suite of spiroacetals including a novel member of the rare, branched chain class has been identified in the glandular secretions of Bactrocera tryoni, the most destructive horticultural pest in Australia.
Resumo:
We present data for the rare earth elements and yttrium (REY) in the National Research Council of Canada natural river water reference material SLRS-4 and 19 natural river waters from small catchments in South-East Queensland, Australia, by a direct ICP-MS method. The 0.22 mu m filtered river water samples show a large degree of variability in both the REY concentration, e.g., La varies from 13 to 1157 ppt, and shape of the alluvial-sediment-normalised REY patterns with different samples displaying light, middle or heavy rare earth enrichment. In addition, a spatial study was undertaken along the freshwater section of Beerburrum Creek, which demonstrates that similar to 75% of the total REYs in this waterway are removed prior to estuarine mixing without evidence of fractionation.
Resumo:
The abundance and activity of the prothrombin activator (pseutarin C) within the venom of the Eastern brown snake (Pseudonaja textilis textilis) is the primary determinant of its coagulation potency. Textilinin-1, also in this venom, is a plasmin inhibitor which is thought to exert its toxic effects through the slowing of fibrinolysis. The aim of this report is to determine if there are differences in the potency of the venom from Eastern brown snakes collected from South Australia (SA) compared to those from Queensland (QLD). A concentration of 0.4 mu g/ml venom protein from six QLD specimens clotted citrated plasma in an average time of 21.4 +/- 3.3 s compared to 68.7 +/- 2.4 s for the same amount of SA venom (averaged for six individuals). The more potent procoagulant activity of the QLD venom was measured between 0.4 and 94 mu g/ml venom protein in plasma. The anti-plasmin activity of textilinin was also greater in the venom of the snakes collected from QLD, causing full inhibition of plasmin at approximately 1.88 mu g/ml of venom protein compared to approximately 7.5 mu g/ml for the SA venoms. It is concluded that geographic differentiation of the Eastern brown snakes results in significant differences venom potency.