983 resultados para B890 Medical Technology not elsewhere classified
Resumo:
Global concerns over the effects of current carbon dioxide (CO2) emissions have lead to extensive research on the use of hydrogen as a potential energy carrier for a lower emissions society. Hydrogen can be produced from both fossil and renewable energy sources. The hydrogen economy, in which hydrogen will be a carrier of energy from renewable sources, is a long-term development and any increasing demand for hydrogen will probably be covered initially from fossil sources. Technologies for hydrogen generation from renewable energies are being explored, whereas technologies for hydrogen production from fossil fuels have to a certain extent reached maturity. This paper addresses the major hydrogen generation processes and utilisation technology (fuel cells) currently available for the move from a fossil fuelsbased economy to a hydrogen economy. In particular, it illustrates the applicability of different hydrogen sources using Australia as an example.
Resumo:
Aims To determine the cost savings of pharmacist initiated changes to hospitalized patients' drug therapy or management in eight major acute care government funded teaching hospitals in Australia. Methods This was a prospective study performed in eight hospitals examining resource implications of pharmacists' interventions assessed by an independent clinical panel. Pharmacists providing clinical services to inpatients recorded details of interventions, defined as any action that directly resulted in a change to patient management or therapy. An independent clinical review panel, convened at each participating centre, confirmed or rejected the clinical pharmacist's assessment of the impact on length of stay (LOS), readmission probability, medical procedures and laboratory monitoring and quantified the resultant changes, which were then costed. Results A total of 1399 interventions were documented. Eight hundred and thirty-five interventions impacted on drug costs alone. Five hundred and eleven interventions were evaluated by the independent panels with three quarters of these confirmed as having an impact on one or more of: length of stay, readmission probability, medical procedures or laboratory monitoring. There were 96 interventions deemed by the independent panels to have reduced LOS and 156 reduced the potential for readmission. The calculated savings was $263 221 for the eight hospitals during the period of the study. This included $150 307 for length of stay reduction, $111 848 for readmission reduction. Conclusions The annualized cost savings relating to length of stay, readmission, drugs, medical procedures and laboratory monitoring as a result of clinical pharmacist initiated changes to hospitalized patient management or therapy was $4 444 794 for eight major acute care government funded teaching hospitals in Australia.
Resumo:
Australia is unique in terms of its geography, population distribution, and energy sources. It has an abundance of fossil fuel in the form of coal, natural gas, coal seam methane (CSM), oil, and a variety renewable energy sources that are under development. Unfortunately, most of the natural gas is located so far away from the main centres of population that it is more economic to ship the energy as LNG to neighboring countries. Electricity generation is the largest consumer of energy in Australia and accounts for around 50% of greenhouse gas emissions as 84% of electricity is produced from coal. Unless these emissions are curbed, there is a risk of increasing temperatures throughout the country and associated climatic instability. To address this, research is underway to develop coal gasification and processes for the capture and sequestration Of CO2. Alternative transport fuels such as biodiesel are being introduced to help reduce emissions from vehicles. The future role of hydrogen is being addressed in a national study commissioned this year by the federal government. Work at the University of Queensland is also addressing full-cycle analysis of hydrogen production, transport, storage, and utilization for both stationary and transport applications. There is a modest but growing amount of university research in fuel cells in Australia, and an increasing interest from industry. Ceramic Fuel Cells Ltd. (CFCL) has a leading position in planar solid oxide fuel cells (SOFCs) technology, which is being developed for a variety of applications, and next year Perth in Western Australia is hosting a trial of buses powered by proton-exchange fuel cells. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Background: Remote access to pediatric cardiology diagnostic services is enabled by real-time transmission of echocardiographic images. Several transmission bandwidths have been used but there has been little analysis of image quality provided by different bandwidths. We designed a study of the quality of transmitted images at various bandwidths. Methods: Two echocardiographers viewed randomly a series of 13 recorded pediatric echocardiographic images either directly or after transmission using 1 of 4 bandwidths: 256; 384; 512; or 768 kbps. An image clarity scoring scale was used to assess image quality of cardiac structures. Results: Measurable differences were found in image quality with different transmission bandwidths; 512 kbps was the minimum for consistently clear imaging of all cardiac structures examined. Conclusion: Bandwidth greater than 512 kbps confers sharper images subjectively although this could not be quantified by our methods.
Resumo:
Cultivation technologies promoting organization of mammalian cells in three dimensions are essential for gene-function analyses as well as drug testing and represent the first step toward the design of tissue replacements and bioartificial organs. Embedded in a three-dimensional environment, cells are expected to develop tissue-like higher order intercellular structures (cell-cell contacts, extracellular matrix) that orchestrate cellular functions including proliferation, differentiation, apoptosis, and angiogenesis with unmatched quality. We have refined the hanging drop cultivation technology to pioneer beating heart microtissues derived from pure primary rat and mouse cardiomyocyte cultures as well as mixed populations reflecting the cell type composition of rodent hearts. Phenotypic characterization combined with detailed analysis of muscle-specific cell traits, extracellular matrix components, as well as endogenous vascular endothelial growth factor (VEGF) expression profiles of heart microtissues revealed (1) a linear cell number-microtissue size correlation, (2) intermicrotissue superstructures, (3) retention of key cardiomyocyte-specific cell qualities, (4) a sophisticated extracellular matrix, and (5) a high degree of self-organization exemplified by the tendency of muscle structures to assemble at the periphery of these myocardial spheroids. Furthermore (6), myocardial spheroids support endogenous VEGF expression in a size-dependent manner that will likely promote vascularization of heart microtissues produced from defined cell mixtures as well as support connection to the host vascular system after implantation. As cardiomyocytes are known to be refractory to current transfection technologies we have designed lentivirus-based transduction strategies to lead the way for genetic engineering of myocardial microtissues in a clinical setting.
Resumo:
Computer-aided tomography has been used for many years to provide significant information about the internal properties of an object, particularly in the medical fraternity. By reconstructing one-dimensional (ID) X-ray images, 2D cross-sections and 3D renders can provide a wealth of information about an object's internal structure. An extension of the methodology is reported here to enable the characterization of a model agglomerate structure. It is demonstrated that methods based on X-ray microtomography offer considerable potential in the validation and utilization of distinct element method simulations also examined.
Resumo:
In this work we assess the pathways for environmental improvement by the coal utilization industry for power generation in Australia. In terms of resources, our findings show that coal is a long term resource of concern as coal reserves are likely to last for the next 500 years or more. However, our analysis indicates that evaporation losses of water in power generation will approach 1000 Gl (gigalitres) per year, equivalent to a consumption of half of the Australian residential population. As Australia is the second driest continent on earth, water consumption by power generators is a resource of immediate concern with regards to sustainability. We also show that coal will continue to play a major role in energy generation in Australia and, hence, there is a need to employ new technologies that can minimize environmental impacts. The major technologies to reduce impacts to air, water and soils are addressed. Of major interest, there is a major potential for developing sequestration processes in Australia, in particular by enhanced coal bed methane (ECBM) recovery at the Bowen Basin, South Sydney Basin and Gunnedah Basin. Having said that, CO2 capture technologies require further development to support any sequestration processes in order to comply with the Kyoto Protocol. Current power generation cycles are thermodynamic limited, with 35-40% efficiencies. To move to a high efficiency cycle, it is required to change technologies of which integrated gasification combined cycle plus fuel cell is the most promising, with efficiencies expected to reach 60-65%. However, risks of moving towards an unproven technology means that power generators are likely to continue to use pulverized fuel technologies, aiming at incremental efficiency improvements (business as usual). As a big picture pathway, power generators are likely to play an increasing role in regional development; in particular EcoParks and reclaiming saline water for treatment as pressures to access fresh water supplies will significantly increase.
Resumo:
The Swinfen Charitable Trust has managed email consultations for doctors in developing countries since 1999. The process was handled manually for the first three years and then subsequently using an automatic message-handling system. We conducted a prospective review of email consultations between referring doctors and consulting specialists during six months of automatic operation (December 2003 to May 2004). During the study period 125 consultations took place. These concerned a wide range of specialties (e.g. orthopaedics 17%, dermatology 16%, obstetrics and gynaecology 11%, radiology 10%). Of these referrals, 33% (41) were for paediatric cases. Consulting specialists, who were based in five countries, were volunteers. Referring doctors were from 24 hospitals in 12 developing countries. The median time from referral to definitive reply was 1.5 days (interquartile range 0.6-4.9). There was an 85% response rate (n = 106) to a survey concerning the value of the consultation to the referring doctor. All the referring doctors who responded made positive comments about the service and half said that it improved their management of the case. The second-opinion consultation system operated by the Swinfen Charitable Trust represents an example of a global e-health system operated for altruistic, rather than commercial, reasons.