70 resultados para working memory, motor short-term memory, motor control
Resumo:
Previous studies have reported that patients with schizophrenia demonstrate impaired performance during working memory (WM) tasks. The current study aimed to determine whether WM impairments in schizophrenia are accompanied by reduced slow wave (SW) activity during on-line maintenance of mnemonic information. Event-related potentials were obtained from patients with schizophrenia and well controls as they performed a visuospatial delayed response task. On 50% of trials, a distractor stimulus was introduced during the delay. Compared with controls, patients with schizophrenia produced less SW memory negativity, particularly over the right hemisphere, together with reduced frontal enhancement of SW memory negativity in response to distraction. The results indicate that patients with schizophrenia generate less maintenance phase neuronal activity during WM performance, especially under conditions of distraction.
Resumo:
To determine whether the visuospatial n-back working memory task is a reliable and valid measure of cognitive processes believed to underlie intelligence, this study compared the reaction times and accuracy of perforniance of 70 participants, with performance on the Multidimensional Aptitude Battery (MAB). Testing was conducted over two sessions separated by 1 week. Participants completed the MAB during the second test session. Moderate testretest reliability for percentage accuracy scores was found across the four levels of the n-back task, whilst reaction times were highly reliable. Furthermore, participants' performance on the MAB was negatively correlated with accuracy of performance at the easier levels of the n-back task and positively correlated with accuracy of performance at the harder task levels. These findings confirm previous research examining the cognitive basis of intelligence, and suggest that intelligence is the product of faster speed of information processing, as well as superior working memory capacity. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
In relation to motor control, the basal ganglia have been implicated in both the scaling and focusing of movement. Hypokinetic and hyperkinetic movement disorders manifest as a consequence of overshooting and undershooting GPi (globus pallidus internus) activity thresholds, respectively. Recently, models of motor control have been borrowed to translate cognitive processes relating to the overshooting and undershooting of GPi activity, including attention and executive function. Linguistic correlates, however, are yet to be extrapolated in sufficient detail. The aims of the present investigation were to: (1) characterise cognitive-linguistic processes within hypokinetic and hyperkinetic neural systems, as defined by motor disturbances; (2) investigate the impact of surgically-induced GPi lesions upon language abilities. Two Parkinsonian cases with opposing motor symptoms (akinetic versus dystonic/dyskinetic) served as experimental subjects in this research. Assessments were conducted both prior to as well as 3 and 12 months following bilateral posteroventral pallidotomy (PVP). Reliable changes in performance (i.e. both improvements and decrements) were typically restricted to tasks demanding complex linguistic operations across subjects. Hyperkinetic motor symptoms were associated with an initial overall improvement in complex language function as a consequence of bilateral PVP, which diminished over time, suggesting a decrescendo effect relative to surgical beneficence. In contrast, hypokinetic symptoms were associated with a more stable longitudinal linguistic profile, albeit defined by higher proportions of reliable decline versus improvement in postoperative assessment scores. The above findings endorsed the integration of the GPi within cognitive mechanisms involved in the arbitration of complex language functions. In relation to models of motor control, 'focusing' was postulated to represent the neural processes underpinning lexical-semantic manipulation, and 'scaling' the potential allocation of cognitive resources during the mediation of high-level linguistic tasks. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Increasing evidence suggests a link between attention, working memory, serotonin (5-HT), and prefrontal cortex activity. In an attempt to tease out the relationship between these elements, this study tested the effects of the hallucinogenic mixed 5-HT1A/2A receptor agonist psilocybin alone and after pretreatment with the 5-HT2A antagonist ketanserin. Eight healthy human volunteers were rested on a multiple-object tracking task and spatial working memory task under the four conditions: placebo, psilocybin (215 mu g/kg), ketanserin (50 mg), and psilocybin and ketanserin. Psilocybin significantly reduced attentional tracking ability, but had no significant effect on spatial working memory, suggesting a functional dissociation between the two tasks. Pretreatment with ketanserin did not attenuate the effect of psilocybin on attentional performance, suggestinga primary involvement of the 5-HT1A receptor in the observed defecit. Based on physiological and pharmacological data,we speculate that this impaired attentional performance may reflect a reduced ability to suppress or ignore distracting stimuli rather than reduced attentional capacity. The clinical relevance of these results is also discussed.
Resumo:
To investigate the stability of trace reactivation in healthy older adults, 22 older volunteers with no significant neurological history participated in a cross-modal priming task. Whilst both object relative center embedded (ORC) and object relative right branching (ORR) sentences is-ere employed, working memory load was reduced by limiting the number of wordy separating the antecedent front the gap for both sentence types. Analysis of the results did not reveal any significant trace reactivation for the ORC or ORR sentences. The results did reveal, however, a positive correlation between age and semantic printing at the pre-gap position and a negative correlation between age and semantic printing at the gap position for ORC sentences. In contrast, there was no correlation between age and priming effects for the ORR sentences. These results indicated that trace reactivation may be sensitive to a variety of age related factors, including lexical activation and working memory. The implications of these results for sentence processing in the older population arc discussed.
Resumo:
Working memory is an essential component of wide-ranging cognitive functions. It is a complex genetic trait probably influenced by numerous genes that individually have only a small influence. These genes may have an amplified influence on phenotypes closer to the gene action. In this study, event-related potential (ERP) phenotypes recorded during a working-memory task were collected from 656 adolescents from 299 families for whom genotypes were available. Univariate linkage analyses using the MERLIN variance-components method were conducted on slow wave phenotypes recorded at multiple sites while participants were required to remember the location of a target. Suggestive linkage (LOD > 2.2) was found on chromosomes 4, 5, 6, 10, 17, and 20. After correcting for multiple testing, suggestive linkage remained on chromosome 10. Empirical thresholds were computed for the most promising phenotypes. Those on chromosome 10 remained suggestive. A number of genes reported to regulate neural differentiation and function (i.e. NRP1, ANK3, and CHAT) were found under these linkage peaks and may influence the levels of neural activity occurring in individuals participating in a spatial working-memory task.