125 resultados para tree-dimensional analytical solution
Resumo:
A numerical study is reported to investigate both the First and the Second Law of Thermodynamics for thermally developing forced convection in a circular tube filled by a saturated porous medium, with uniform wall temperature, and with the effects of viscous dissipation included. A theoretical analysis is also presented to study the problem for the asymptotic region applying the perturbation solution of the Brinkman momentum equation reported by Hooman and Kani [1]. Expressions are reported for the temperature profile, the Nusselt number, the Bejan number, and the dimensionless entropy generation rate in the asymptotic region. Numerical results are found to be in good agreement with theoretical counterparts.
Resumo:
A hydraulic jump is the transition from a supercritical open channel flow to a subcritical regime. It is characterised by a highly turbulent flow with macro-scale vortices, some kinetic energy dissipation and a bubbly two-phase flow structure. New air-water flow measurements were performed in hydraulic jump flows for a range of inflow Froude numbers. The experiments were conducted in a large-size facility using two types of phase-detection intrusive probes: i.e., single-tip and double-tip conductivity probes. These were complemented by some measurements of free-surface fluctuations using ultrasonic displacement meters. The present study was focused on the turbulence characteristics of hydraulic jumps with partially-developed inflow conditions. The void fraction measurements showed the presence of an advective diffusion shear layer in which the void fractions profiles matched closely an analytical solution of the advective diffusion equation for air bubbles. The present results highlighted some influence of the inflow Froude number onto the air bubble entrainment process. At the largest Froude numbers, the advected air bubbles were more thoroughly dispersed vertically, and larger amount of air bubbles were detected in the turbulent shear layer. In the air-water mixing layer, the maximum void fraction and bubble count rate data showed some longitudinal decay function in the flow direction. Such trends were previously reported in the literature. The measurements of interfacial velocity and turbulence level distributions provided new information on the turbulent velocity field in the highly-aerated shear region. The present data suggested some longitudinal decay of the turbulence intensity. The velocity profiles tended to follow a wall jet flow pattern. The air–water turbulent time and length scales were deduced from some auto- and cross-correlation analyses based upon the method of CHANSON (2006,2007). The results provided the integral turbulent time and length scales of the eddy structures advecting the air bubbles in the developing shear layer. The experimental data showed that the auto-correlation time scale Txx was larger than the transverse cross-correlation time scale Txz. The integral turbulence length scale Lxz was a function of the inflow conditions, of the streamwise position (x-x1)/d1 and vertical elevation y/d1. Herein the dimensionless integral turbulent length scale Lxz/d1 was closely related to the inflow depth: i.e., Lxz/d1 = 0.2 to 0.8, with Lxz increasing towards the free-surface. The free-surface fluctuations measurements showed large turbulent fluctuations that reflected the dynamic, unsteady structure of the hydraulic jumps. A linear relationship was found between the normalized maximum free-surface fluctuation and the inflow Froude number.
Resumo:
A theoretical analysis is carried out to investigate the pore-fluid pressure gradient and effective vertical-stress gradient distribution in fluid saturated porous rock masses in layered hydrodynamic systems. Three important concepts, namely the critical porosity of a porous medium, the intrinsic Fore-fluid pressure and the intrinsic effective vertical stress of the solid matrix, are presented and discussed. Using some basic scientific principles, we derive analytical solutions and explore the conditions under which either the intrinsic pore-fluid pressure gradient or the intrinsic effective vertical-stress gradient can be maintained at the value of the lithostatic pressure gradient. Even though the intrinsic pore-fluid pressure gradient can be maintained at the value of the lithostatic pressure gradient in a single layer, it is impossible to maintain it at this value in all layers in a layered hydrodynamic system, unless all layers have the same permeability and porosity simultaneously. However, the intrinsic effective vertical-stress gradient of the solid matrix can be maintained at a value close to the lithostatic pressure gradient in all layers in any layered hydrodynamic system within the scope of this study.
Resumo:
The truncation errors associated with finite difference solutions of the advection-dispersion equation with first-order reaction are formulated from a Taylor analysis. The error expressions are based on a general form of the corresponding difference equation and a temporally and spatially weighted parametric approach is used for differentiating among the various finite difference schemes. The numerical truncation errors are defined using Peclet and Courant numbers and a new Sink/Source dimensionless number. It is shown that all of the finite difference schemes suffer from truncation errors. Tn particular it is shown that the Crank-Nicolson approximation scheme does not have second order accuracy for this case. The effects of these truncation errors on the solution of an advection-dispersion equation with a first order reaction term are demonstrated by comparison with an analytical solution. The results show that these errors are not negligible and that correcting the finite difference scheme for them results in a more accurate solution. (C) 1999 Elsevier Science B.V. All rights reserved.
Theoretical and numerical analyses of convective instability in porous media with upward throughflow
Resumo:
Exact analytical solutions have been obtained for a hydrothermal system consisting of a horizontal porous layer with upward throughflow. The boundary conditions considered are constant temperature, constant pressure at the top, and constant vertical temperature gradient, constant Darcy velocity at the bottom of the layer. After deriving the exact analytical solutions, we examine the stability of the solutions using linear stability theory and the Galerkin method. It has been found that the exact solutions for such a hydrothermal system become unstable when the Rayleigh number of the system is equal to or greater than the corresponding critical Rayleigh number. For small and moderate Peclet numbers (Pe less than or equal to 6), an increase in upward throughflow destabilizes the convective flow in the horizontal layer. To confirm these findings, the finite element method with the progressive asymptotic approach procedure is used to compute the convective cells in such a hydrothermal system. Copyright (C) 1999 John Wiley & Sons, Ltd.
Resumo:
Most soils contain preferential flow paths that can impact on solute mobility. Solutes can move rapidly down the preferential flow paths with high pore-water velocities, but can be held in the less permeable region of the soil matrix with low pore-water velocities, thereby reducing the efficiency of leaching. In this study, we conducted leaching experiments with interruption of the flow and drainage of the main flow paths to assess the efficiency of this type of leaching. We compared our experimental results to a simple analytical model, which predicts the influence of the variations in concentration gradients within a single spherical aggregate (SSA) surrounded by preferential flow paths on leaching. We used large (length: 300 mm, diameter: 216 mm) undisturbed field soil cores from two contrasting soil types. To carry out intermittent leaching experiments, the field soil cores were first saturated with tracer solution (CaBr2), and background solution (CaCl2) was applied to mimic a leaching event. The cores were then drained at 25- to 30-cm suction to empty the main flow paths to mimic a dry period during which solutes could redistribute within the undrained region. We also conducted continuous leaching experiments to assess the impact of the dry periods on the efficiency of leaching. The flow interruptions with drainage enhanced leaching by 10-20% for our soils, which was consistent with the model's prediction, given an optimised equivalent aggregate radius for each soil. This parameter quantifies the time scales that characterise diffusion within the undrained region of the soil, and allows us to calculate the duration of the leaching events and interruption periods that would lead to more efficient leaching. Application of these methodologies will aid development of strategies for improving management of chemicals in soils, needed in managing salts in soils, in improving fertiliser efficiency, and in reclaiming contaminated soils. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
The action of water waves moving over a porous seabed drives a seepage flux into and out of the marine sediments. The volume of fluid exchange per wave cycle may affect the rate of contaminant transport in the sediments. In this paper, the dynamic response of the seabed to ocean waves is treated analytically on the basis of pore-elastic theory applied to a porous seabed. The seabed is modelled as a semi-infinite, isotropic, homogeneous material. Most previous investigations on the wave-seabed interaction problem have assumed quasi-static conditions within the seabed, although dynamic behaviour often occurs in natural environments. Furthermore, wave pressures used in the previous approaches were obtained from conventional ocean wave theories: which are based on the assumption of an impermeable rigid seabed. By introducing a complex wave number, we derive a new wave dispersion equation, which includes the seabed characteristics (such as soil permeability, shear modulus, etc.). Based on the new closed-form analytical solution, the relative differences of the wave-induced seabed response under dynamic and quasi-static conditions are examined. The effects of wave and soil parameters on the seepage flux per wave cycle are also discussed in detail. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
Tidal fluctuations in a leaky confined coastal aquifer are damped significantly due to leakage into an overlying phreatic aquifer. Jiao and Tang [1999] presented an analytical solution to a simple model describing this phenomenon. Their solution assumes that the tidal fluctuations in the overlying phreatic aquifer are negligible (i.e,, a static phreatic aquifer), Here we examine dynamic effects of the overlying aquifer based on a new approximate analytical solution. The numerical results indicate that the dynamic effects can be significant for a relatively large leakage and a high transmissivity of the phreatic aquifer.
Resumo:
The occurrence of foliated rock masses is common in mining environment. Methods employing continuum approximation in describing the deformation of such rock masses possess a clear advantage over methods where each rock layer and each inter-layer interface (joint) is explicitly modelled. In devising such a continuum model it is imperative that moment (couple) stresses and internal rotations associated with the bending of the rock layers be properly incorporated in the model formulation. Such an approach will lead to a Cosserat-type theory. In the present model, the behaviour of the intact rock layer is assumed to be linearly elastic and the joints are assumed to be elastic-perfectly plastic. Condition of slip at the interfaces are determined by a Mohr-Coulomb criterion with tension cut off at zero normal stress. The theory is valid for large deformations. The model is incorporated into the finite element program AFENA and validated against an analytical solution of elementary buckling problems of a layered medium under gravity loading. A design chart suitable for assessing the stability of slopes in foliated rock masses against flexural buckling failure has been developed. The design chart is easy to use and provides a quick estimate of critical loading factors for slopes in foliated rock masses. It is shown that the model based on Euler's buckling theory as proposed by Cavers (Rock Mechanics and Rock Engineering 1981; 14:87-104) substantially overestimates the critical heights for a vertical slope and underestimates the same for sub-vertical slopes. Copyright (C) 2001 John Wiley & Sons, Ltd.
Resumo:
We use the finite element method to model the heat transfer phenomenon through permeable cracks in hydrothermal systems with upward throughflow. Since the finite element method is an approximate numerical method, the method must be validated before it is used to soh,e any new, kind of problem. However, the analytical solution, which can be used to validate the finite element method and other numerical methods, is rather limited in the literature, especially, for the problem considered here. Keeping this in mind, we have derived analytical solutions for the temperature distribution along the vertical axis of a crack in a fluid-saturated porous layer. After the finite element method is validated by comparing the numerical solution with the analytical solution for the same benchmark problem, it is used to investigate the pore-fluid flow and heat transfer in layered hydrothermal systems with vertical permeable cracks. The related analytical and numerical results have demonstrated that vertical cracks are effective and efficient members to transfer heat energy from the bottom section to the top section in hydrothermal systems with upward throughflow.
Resumo:
Damping of tidal head fluctuations in a leaky confined coastal aquifer is enhanced by leakage into an overlying phreatic aquifer. We show that the phreatic aquifer is, however, resistant to the leakage flow and in particular, a deep phreatic aquifer can reduce the leakage effects significantly. An analytical solution, based on a vertical flow model for the phreatic aquifer, is derived for quantifying the role of this upper free water body in tidal propagation in the lower semi-confined aquifer. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
We conduct a theoretical analysis of steady-state heat transfer problems through mid-crustal vertical cracks with upward throughflow in hydrothermal systems. In particular, we derive analytical solutions for both the far field and near field of the system. In order to investigate the contribution of the forced advection to the total temperature of the system, two concepts, namely the critical Peclet number and the critical permeability of the system, have been presented and discussed in this paper. The analytical solution for the far field of the system indicates that if the pore-fluid pressure gradient in the crust is lithostatic, the critical permeability of the system can be used to determine whether or not the contribution of the forced advection to the total temperature of the system is negligible. Otherwise, the critical Peclet number should be used. For a crust of moderate thickness, the critical permeability is of the order of magnitude of 10(-20) m(2), under which heat conduction is the overwhelming mechanism to transfer heat energy, even though the pore-fluid pressure gradient in the crust is lithostatic. Furthermore, the lower bound analytical solution for the near field of the system demonstrates that the permeable vertical cracks in the middle crust can efficiently transfer heat energy from the lower crust to the upper crust of the Earth. Copyright (C) 2002 John Wiley Sons, Ltd.
Resumo:
We conduct a theoretical analysis to investigate the convective instability of 3-D fluid-saturated geological fault zones when they are heated uniformly from below. In particular, we have derived exact analytical solutions for the critical Rayleigh numbers of different convective flow structures. Using these critical Rayleigh numbers, three interesting convective flow structures have been identified in a geological fault zone system. It has been recognized that the critical Rayleigh numbers of the system have a minimum value only for the fault zone of infinite length, in which the corresponding convective flow structure is a 2-D slender-circle flow. However, if the length of the fault zone is finite, the convective flow in the system must be 3-D. Even if the length of the fault zone is infinite, since the minimum critical Rayleigh number for the 2-D slender-circle flow structure is so close to that for the 3-D convective flow structure, the system may have almost the same chance to pick up the 3-D convective flow structures. Also, because the convection modes are so close for the 3-D convective flow structures, the convective flow may evolve into the 3-D finger-like structures, especially for the case of the fault thickness to height ratio approaching zero. This understanding demonstrates the beautiful aspects of the present analytical solution for the convective instability of 3-D geological fault zones, because the present analytical solution is valid for any value of the ratio of the fault height to thickness. Using the present analytical solution, the conditions, under which different convective flow structures may take place, can be easily determined.
Resumo:
Exact analytical solutions of the critical Rayleigh numbers have been obtained for a hydrothermal system consisting of a horizontal porous layer with temperature-dependent viscosity. The boundary conditions considered are constant temperature and zero vertical Darcy velocity at both the top and bottom of the layer. Not only can the derived analytical solutions be readily used to examine the effect of the temperature-dependent viscosity on the temperature-gradient driven convective flow, but also they can be used to validate the numerical methods such as the finite-element method and finite-difference method for dealing with the same kind of problem. The related analytical and numerical results demonstrated that the temperature-dependent viscosity destabilizes the temperature-gradient driven convective flow and therefore, may affect the ore body formation and mineralization in the upper crust of the Earth. Copyright (C) 2003 John Wiley Sons, Ltd.
Resumo:
Predictions of water table fluctuations in coastal aquifers are needed for numerous coastal and water resources engineering problems. Most previous investigations have been based on the Boussinesq equation for the case of a vertical beach. In this note an analytical solution based on shallow water expansion for the spring- neap tide- induced water table fluctuations in a coastal aquifer is presented. Unlike most previous investigations, multitidal signals are considered with a sloping coastal aquifer. The new solution is verified by comparing with field observations from Ardeer, Scotland. On the basis of the analytical approximation the influences of higher- order components on water table elevation are examined first. Then, a parametric study has been performed to investigate the effects of the amplitude ratio (lambda), frequency ratio (omega), and phases (delta(1) and delta(2)) on the tide- induced water table fluctuations in a sloping sandy beach.