106 resultados para transport practices
Resumo:
The increased use of trickle or drip irrigation is seen as one way of helping to improve the sustainability of irrigation systems around the world. However, soil water and solute transport properties and soil profile characteristics are often not adequately incorporated in the design and management of trickle systems. In this paper, we describe results of a simulation study designed to highlight the impacts of soil properties on water and solute transport from buried trickle emitters. The analysis addresses the influence of soil hydraulic properties, soil layering, trickle discharge rate, irrigation frequency, and timing of nutrient application on wetting patterns and solute distribution. We show that (1) trickle irrigation can improve plant water availability in medium and low permeability fine-textured soils, providing that design and management are adapted to account for their soil hydraulic properties, (2) in highly permeable coarse-textured soils, water and nutrients move quickly downwards from the emitter, making it difficult to wet the near surface zone if emitters are buried too deep, and (3) changing the fertigation strategy for highly permeable coarse-textured soils to apply nutrients at the beginning of an irrigation cycle can maintain larger amounts of nutrient near to and above the emitter, thereby making them less susceptible to leaching losses. The results demonstrate the need to account for differences in soil hydraulic properties and solute transport when designing irrigation and fertigation management strategies. Failure to do this will result in inefficient systems and lost opportunities for reducing the negative environmental impacts of irrigation.
Resumo:
Reflexivity involves turning one's reflexive gaze oil discourse-turning language back on itself to see the Work it does in constituting the world. The subject/researcher sees simultaneously the object of her or his gaze and the means by which the object (which may include oneself as subject) is being constituted. The consciousness of self that reflexive writing sometimes entails may be seen to slip inadvertently into constituting the very (real) self that seems to contradict a focus on the constitutive power of discourse. This article explores this site of slippage and of ambivalence. In a collective biography oil the topic of reflexivity, the authors tell and write stories about reflexivity and in a doubled reflexive arc, examine themselves at work during the workshop. Examining their own memories and reflexive practices, they explore this place of slippage and provide theoretical and practical insight into what is going on in reflexive research and writing.
Resumo:
Existing archaeobotanical and palynological records of plant use in the northern New Guinea lowlands are reviewed in light of recent work at Kuk and theoretical refocusing on plant use practice. A practice-based approach is supported as the most useful way of investigating the highly problematical area of tropical plant food production. The existing direct record of past plant use in lowland New Guinea is considered woefully inadequate to achieve this task, as is that in Near Oceania and Island Southeast Asia. Archaeobotanical methods exist to fill the void, but full implementation requires a change in general archaeological and palaeoecological practice.
Resumo:
This paper presents field measurements and numerical simulations of groundwater dynamics in the intertidal zone of a sandy meso-tidal beach. The study, focusing on vertical hydraulic gradients and pore water salinities, reveals that tides and waves provide important forcing mechanisms for flow and salt transport in the nearshore aquifer. Such forcing, interacting with the beach morphology, enhances the exchange between the aquifer and ocean. The spatial and temporal variations of vertical hydraulic gradients demonstrate the complexity and dynamic nature of the processes and the extent of mixing between fresh groundwater and seawater in a subterranean estuary''. These results provide evidence of a potentially important reaction zone in the nearshore aquifer driven by oceanic oscillations. Land-derived contaminants may undergo important biogeochemical transformations in this zone prior to discharge.
Resumo:
PHWAT is a new model that couples a geochemical reaction model (PHREEQC-2) with a density-dependent groundwater flow and solute transport model (SEAWAT) using the split-operator approach. PHWAT was developed to simulate multi-component reactive transport in variable density groundwater flow. Fluid density in PHWAT depends not on only the concentration of a single species as in SEAWAT, but also the concentrations of other dissolved chemicals that can be subject to reactive processes. Simulation results of PHWAT and PHREEQC-2 were compared in their predictions of effluent concentration from a column experiment. Both models produced identical results, showing that PHWAT has correctly coupled the sub-packages. PHWAT was then applied to the simulation of a tank experiment in which seawater intrusion was accompanied by cation exchange. The density dependence of the intrusion and the snow-plough effect in the breakthrough curves were reflected in the model simulations, which were in good agreement with the measured breakthrough data. Comparison simulations that, in turn, excluded density effects and reactions allowed us to quantify the marked effect of ignoring these processes. Next, we explored numerical issues involved in the practical application of PHWAT using the example of a dense plume flowing into a tank containing fresh water. It was shown that PHWAT could model physically unstable flow and that numerical instabilities were suppressed. Physical instability developed in the model in accordance with the increase of the modified Rayleigh number for density-dependent flow, in agreement with previous research. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Sulfate is required for detoxification of xenobiotics such as acetaminophen (APAP), a leading cause of liver failure in humans. The NaS1 sulfate transporter maintains blood sulfate levels sufficiently high for sulforiation reactions to work effectively for drug detoxification. In the present study, we identified two loss-of-function polymorphisms in the human NaS1 gene and showed the Nas1-null mouse to be hypersensitive to APAP hepatotoxicity. APAP treatment led to increased liver damage and decreased hepatic glutathione levels in the hyposulfatemic Nas1-null mice compared with that in normosulfatemic wild-type mice. Analysis of urinary APAP metabolites revealed a significantly lower ratio of APAP-sulfate to APAP-glucuronide in the Nas1-null mice. These results suggest hyposulfatemia increases sensitivity to APAP-induced hepatotoxicity by decreasing the sulfonation capacity to metabolize APAP. In conclusion, the results of this study highlight the importance of plasma sulfate level as a key modulator of acetaminophen metabolism and suggest that individuals with reduced NaS1 sulfate transporter function would be more sensitive to hepatotoxic agents.
Resumo:
We examine the mean flux across a homogeneous membrane of a charged tracer subject to an alternating, symmetric voltage waveform. The analysis is based on the Nernst-Planck flux equation, with electric field subject to time dependence only. For low frequency electric fields the quasi steady-state flux can be approximated using the Goldman model, which has exact analytical solutions for tracer concentration and flux. No such closed form solutions can be found for arbitrary frequencies, however we find approximations for high frequency. An approximation formula for the average flux at all frequencies is also obtained from the two limiting approximations. Numerical integration of the governing equation is accomplished by use of the numerical method of lines and is performed for four different voltage waveforms. For the different voltage profiles, comparisons are made with the approximate analytical solutions which demonstrates their applicability. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
In seeking to increase the flexibility of their use of employee time, employers can pursue strategies based on the employment of casual and part-time workers (numerical flexibility) or strategies based on ad hoc variation of the working hours of permanent employees (working time flexibility). Patterns of flexibility strategies and their implications are examined in the context of a highly feminised sector of work-clerical and administrative employment in law and accounting firms. We consider whether, as is often assumed, working time flexibility strategies are generally better for employees because they avoid the substitution of core, high quality jobs with the peripheral, relatively insecure employment often associated with casualisation. Analysing data drawn from a survey of law and accounting firms, we argue that there are three distinct flexibility strategies adopted by employers, and that the choice of strategy is influenced by the size of the firm and the extent of feminisation. The quality of employment conditions associated with each strategy is investigated through an analysis of the determinants of training provision for clerical and administrative workers. Rather than an expected simple linear relationship between increasing casualisation and decreasing training provision, we find that firm size and feminisation are implicated. Larger firms that tend to employ at least some men and use a combination of working time and numerical flexibility strategies tend to provide more training than the small, more fully feminised firms that tend to opt for either casualisation or working time flexibility strategies. This suggests that, from an employee perspective, working time flexibility may not be as benevolent as is often thought.
Resumo:
Transport in bidisperse adsorbents is investigated here, while incorporating a two-dimensional model for adsorbate diffusion in the microparticles. The latter treatment permits consideration of the macropore concentration variation around the microparticle surface, and thereby predicts an adsorbate through-flux on the macroscopic coordinate. Such a through-flux has earlier been postulated in the literature, but with unrealistic mechanistic justification. The new model therefore resolves the existing ambiguity in this regard, and covers the entire spectrum of behaviour between microparticle and macropore diffusion control. Computational results show that if the macroscopic adsorbate flux, ignored in the conventional analysis, has a significant contribution to the total flux under macropore control conditions then it is always important even when the microparticle diffusion resistance is not negligible. The effect of various parameters such as relative microparticle size and isotherm heterogeneity on the uptake is also studied and discussed. (C) 1997 Elsevier Science Ltd.
Resumo:
This empirical exploratory study is part of a larger comprehensive study of countertrade practices in the Asia-Pacific region. A mail survey of 600 Australian international trading firms reveals that a positive attitude toward countertrade exists among both countertraders and non-countertraders in Australia. Further the study reveals the major motivating factors, the benefits derived difficulties faced and reasons for not countertrading by Australian firms. In addition, the study identifies the forms of countertrade used, the countries sewed, and the product and service categories countertraded. The results are compared to earlier studies of UK and Canadian firms, and the implications for international marketing managers are discussed. (C) Elsevier Science Inc., 1997.
Resumo:
The suprathermal particles, electrons and protons, coming from the magnetosphere and precipitating into the high-latitude atmosphere are an energy source of the Earth's ionosphere. They interact with ambient thermal gas through inelastic and elastic collisions. The physical quantities perturbed by these precipitations, such as the heating rate, the electron production rate, or the emission intensities, can be provided in solving the kinetic stationary Boltzmann equation. This equation yields particle fluxes as a function of altitude, energy, and pitch angle. While this equation has been solved through different ways for the electron transport and fully tested, the proton transport is more complicated. Because of charge-changing reactions, the latter is a set of two-coupled transport equations that must be solved: one for protons and the other for H atoms. We present here a new approach that solves the multistream proton/hydrogen transport equations encompassing the collision angular redistributions and the magnetic mirroring effect. In order to validate our model we discuss the energy conservation and we compare with another model under the same inputs and with rocket observations. The influence of the angular redistributions is discussed in a forthcoming paper.