90 resultados para transcription factor FOXP3
Resumo:
The BRN2 transcription factor (POU3F2, N-Oct-3) has been implicated in development of the melanocytic lineage and in melanoma. Using a low calcium medium supplemented with stem cell factor, fibroblast growth factor-2, endothelin-3 and cholera toxin, we have established and partially characterised human melanocyte precursor cells, which are unpigmented, contain immature melanosomes and lack L-dihydroxyphenylalanine reactivity. Melanoblast cultures expressed high levels of BRN2 compared to melanocytes, which decreased to a level similar to that of melanocytes when cultured in medium that contained phorbol ester but lacked endothelin-3, stem cell factor and fibroblast growth factor-2. This decrease in BRN2 accompanied a positive L-dihydroxyphenylalanine reaction and induction of melanosome maturation consistent with melanoblast differentiation seen during development. Culture of primary melanocytes in low calcium medium supplemented with stem cell factor, fibroblast growth factor-2 and endothelin-3 caused an increase in BRN2 protein levels with a concomitant change to a melanoblast-like morphology. Synergism between any two of these growth factors was required for BRN2 protein induction, whereas all three factors were required to alter melanocyte morphology and for maximal BRN2 protein expression. These finding implicate BRN2 as an early marker of melanoblasts that may contribute to the hierarchy of melanocytic gene control.
Resumo:
The c-fms gene encodes the receptor for macrophage colony-stimulating factor (CSF-1). The gene is expressed selectively in the macrophage and trophoblast cell lineages. Previous studies have indicated that sequences in intron 2 control transcript elongation in tissue-specific and regulated expression of c-fms. In humans, an alternative promoter was implicated in expression of the gene in trophoblasts. We show that in mice, c-fms transcripts in trophoblasts initiate from multiple points within the 2-kilobase (kb) region flanking the first coding exon. A reporter gene construct containing 3.5 kb of 5' flanking sequence and the down-stream intron 2 directed expression of enhanced green fluorescent protein (EGFP) to both trophoblasts and macrophages. EGFP was detected in trophoblasts from the earliest stage of implantation examined at embryonic day 7.5. During embryonic development, EGFP highlighted the large numbers of c-fms-positive macrophages, including those that originate from the yolk sac. In adult mice, EGFP location Was consistent with known F4/80-positive macrophage populations, including Langerhans cells of the skin, and permitted convenient sorting of isolated tissue macrophages from disaggregated tissue. Expression of EGFP in transgenic mice was dependent on intron 2 as no lines with detectable EGFP expression were obtained where either all of intron 2 or a conserved enhancer element FIRE (the Fms intronic regulatory element) was removed. We have therefore defined the elements required to generate myeloid- and trophoblast-specific transgenes as well as a model system for the study of mononuclear phagocyte development and function. (C) 2003 by The American Society of Hematology.
Resumo:
Objectives: Long-term, low-dose macrolide therapy is effective in the treatment of chronic rhinosinusitis. It is believed that macrolide antibiotics produce this benefit through an anti-inflammatory effect. In this study, the effect of clarithromycin treatment on the expression of transforming growth factor (TGF)-beta and the key pro-inflammatory nuclear transcription factor, NF-kappaB, was examined in vitro and in vivo. Study Design and Methods: In vitro: nasal mucosa was obtained from 10 patients with chronic sinusitis and was cultured for 24 hours in the presence of clarithromycin or control. Cellular expression of TGF-beta and NF-kappaB was determined by immunohistochemistry. In vivo: 10 patients with chronic rhinosinusitis were treated for 3 months with clarithromycin. Nasal mucosal biopsies were taken pre- and posttreatment. Cellular expression of TGF-beta and NF-kappaB was again determined by immunohistochemistry. Results: Clarithromycin, when applied to nasal biopsies in vitro, reduced cellular expression of TGF-beta and NF-kappaB. Nasal biopsies taken before and after clarithromycin treatment showed no differences in cellular expression of NF-kappaB or TGF-beta. Conclusion: Clarithromycin can reduce cellular expression of TGF-beta and NF-kappaB when applied in vitro, but its action during clinical therapy is less clear. Clarithromycin is capable of inhibiting pro-inflammatory cytokines in vitro, and reductions of TGF-beta and NF-kappaB may represent additional mechanisms by which macrolides reduce inflammation in chronic airway disease. Discrepancies between the actions of clarithromycin on nasal biopsies in vitro and after clinical therapy warrant further investigation.
Resumo:
Alignments of homologous genomic sequences are widely used to identify functional genetic elements and study their evolution. Most studies tacitly equate homology of functional elements with sequence homology. This assumption is violated by the phenomenon of turnover, in which functionally equivalent elements reside at locations that are nonorthologous at the sequence level. Turnover has been demonstrated previously for transcription-factor-binding sites. Here, we show that transcription start sites of equivalent genes do not always reside at equivalent locations in the human and mouse genomes. We also identify two types of partial turnover, illustrating evolutionary pathways that could lead to complete turnover. These findings suggest that the signals encoding transcription start sites are highly flexible and evolvable, and have cautionary implications for the use of sequence-level conservation to detect gene regulatory elements.
Resumo:
We have previously detected two related murine nuclear proteins, p160 and p67, that can bind to the leucine zipper motif within the negative regulatory domain of the Myb transcription factor. We now describe the molecular cloning of cDNA corresponding to murine p160. The P160 gene is located on mouse chromosome 11, and related sequences are found on chromosomes 1 and 12. The predicted p160 protein is novel, and in agreement with previous studies, we find that the corresponding 4.5-kb mRNA is ubiquitously expressed. We showed that p67 is an N-terminal fragment of p160 which is generated by proteolytic cleavage in certain cell types. The protein encoded by the cloned p160 cDNA and an engineered protein (p67*) comprising the amino-terminal region of p160 exhibit binding specificities for the Myb and Jun leucine zipper regions identical to those of endogenous p160 and p67, respectively. This implies that the Myb-binding site of p160 lies within the N-terminal 580 residues and that the Jun-binding site is C-terminal to this position. Moreover, we show that p67* but not p160 can inhibit transactivation by Myb. Unexpectedly, immunofluorescence studies show that p160 is localized predominantly in the nucleolus. The implications of these results for possible functions of p160 are discussed.
Resumo:
The c-myb gene is the cellular homologue of the v-myb oncogenes carried by the avian leukaemia viruses AMV and E26. It encodes a transcription factor (c-Myb), as does each of the viral oncogenes, which recognises the core DNA sequence C/T-A-A-C-G/T-G via a repeated helix-turn-helix-like motif. c-myb is expressed in immature haemopoietic cells, as well as immature cells of the gastro-intestinal epithelium and is down-regulated with differentiation. Enforced expression of activated or even normal forms of Myb can transform haemopoietic cells, most often of the myeloid lineage, in vitro and in vivo. Although many genes have been identified which are likely to be regulated by c-Myb, the critical target genes involved in Myb's transforming activity are not known. Together with data showing increased c-myb expression in colonic tumours, these observations raise the possibility that c-myb may play a role in human malignant disease. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
The basic framework for the JAK/STAT pathway is well documented. Recruitment of latent cytoplasmic STAT transcription factors to tyrosine phosphorylated docking sites on cytokine receptors and their JAK-mediated phosphorylation instigates their translocation to the nucleus and their ability to bind DNA, The biochemical processes underlying recruitment and activation of this pathway have commonly been studied in reconstituted in vitro systems using previously defined recombinant signaling components. We have dissected the Interferon gamma (IFN gamma) signal transduction pathway in crude extracts from wild-type and STAT1-negative mutant cell Lines by real-time BIAcore analysis, size-exclusion (SE) chromatography and immune-detection. The data indicate that in detergent-free cell extracts: (1) the phospho-tyrosine (Y440P)-containing peptide motif of the IFN gamma-receptor ct-chain interacts directly with STAT1, or STAT1 complexes, and no other protein; (2) nonactivated STAT 1 is present in a higher molecular weight complex(es) and, at least for IFN gamma-primed cells, is available for recruitment to the activated IFN gamma-receptor from only a subset of such complexes; (3) activated STAT1 is released from the receptor as a monomer.
Resumo:
Zinc fingers are recognized as small protein domains that bind to specific DNA sequences. Recently however, zinc fingers from a number of proteins, in particular the GATA family of transcription factors, have also been implicated in specific protein-protein interactions. The erythroid protein GATA-1 contains two zinc fingers: the C-finger, which is sufficient for sequence-specific DNA-binding, and the N-finger, which appears both to modulate DNA-binding and to interact with other transcription factors. We have expressed and purified the N-finger domain and investigated its involvement in the self-association of GATA-1. We demonstrate that this domain does not homodimerize but instead makes intermolecular contacts with the C-finger, suggesting that GATA dimers are maintained by reciprocal N-finger-C-finger contacts. Deletion analysis identifies a 25-residue region, C-terminal to the core N-finger domain, that is sufficient for interaction with intact GATA-1. A similar subdomain exists C-terminal to the C-finger, and we show that self-association is substantially reduced when both subdomains are disrupted by mutation. Moreover, mutations that impair GATA-1 self-association also interfere with its ability to activate transcription in transfection studies.
Resumo:
Protein-protein interactions play significant roles in the control of gene expression. These interactions often occur between small, discrete domains within different transcription factors. In particular, zinc fingers, usually regarded as DNA-binding domains, are now also known to be involved in mediating contacts between proteins. We have investigated the interaction between the erythroid transcription factor GATA-1 and its partner, the 9 zinc finger protein, FOG (Friend of GATA). We demonstrate that this interaction represents a genuine finger-finger contact, which is dependent on zinc coordinating residues within each protein. We map the contact domains to the core of the N-terminal zinc finger of GATA-1 and the 6th zinc finger of FOG. Using a scanning substitution strategy we identify key residues within the GATA-1 N-finger which are required for FOG binding. These residues are conserved in the N-fingers of all GATA proteins known to bind FOG, but are not found in the respective C-fingers, This observation may, therefore, account for the particular specificity of FOG for N-fingers, Interestingly, the key N-finger residues are seen to form a contiguous surface, when mapped onto the structure of the N-finger of GATA-1.
Resumo:
Background: IL-5 controls development of eosinophilia and has been shown to be involved in the pathogenesis of allergic diseases. In both atopic and nonatopic asthma, elevated IL-5 has been detected in peripheral blood and the airways. IL-5 is produced mainly by activated T cells, and its expression is regulated at the transcriptional level. Objective: This study focuses on the functional analysis of the human IL-5 (hIL-5) promoter and characterization of eis-regulatory elements and transcription factors involved in the suppression of IL-5 transcription in T cells. Methods: Methods used in this study include DNase I footprint assays, electrophoretic mobility shift assays, and functional analysis by mammalian cell transfection involving deletion analysis and site-directed mutagenesis. Results: We identified 5 protein binding regions (BRs) located within the proximal hIL-5 promoter. Functional analysis indicates that the BRs are involved in control of hIL-5 promoter activity. Two of these regions, BR3 and BR4 located at positions -102 to -73, have not previously been described as regulators of IL-5 expression in T cells. We show that the BR3 sequence contains a novel negative regulatory element located at positions -90 to -79 of the hIL-5 promoter, which binds Oct1, octamer-like, and YY1 nuclear factors. Substitution mutations, which abolished binding of these proteins to the BR3 sequence, significantly increased hIL-5 promoter activity in activated T cells. Conclusion: We suggest that Oct1, YY1, and octamer-like factors binding to the -90/-79 sequence within the proximal IL-5 promoter are involved in suppression of IL-5 transcription in T cells.
Resumo:
Dimerisation of leucine zippers results from the parallel association of alpha-helices to form a coiled coil. Coiled coils comprise a heptad repeat, denoted as (abcdefg)(n), where residues at positions a and d are hydrophobic and constitute the core of the dimer interface. Charged amino acids at the e and g positions of the coiled coil are thought to be the major influence on dimerisation specificity through the formation of attractive and repulsive interhelical electrostatic interactions. However, the variability of a-position residues in leucine zipper transcription factors prompted us to investigate their influence on dimerisation specificity. We demonstrate that mutation of a single interfacial a-position Ala residue to either Val, Ile or Leu significantly alters the homo- and heterodimerisation specificities of the leucine zipper domain from the c-Jun transcription factor. These results illustrate the importance of a-position residues in controlling leucine zipper dimerisation specificity in addition to providing substantial contributions to dimer stability.
Resumo:
The neurotrophin receptor (p75NTR) is best known for mediating tropic support by participating in the formation of high-affinity nerve growth factor (NGF) receptor complexes with trkA, however, p75NTR more recently has been shown to act as a bona fide death-signaling receptor, which can signal independently of trkA. This article discusses the evidence for an active role of p75NTR in neuronal cell death and the mechanisms controlling this process, including roles for Bcl-2 family members, the c-jun stress kinase JNK, the transcription factor nuclear factor kappa B (NF kappa B), and caspases.
Resumo:
Establishment of long-term potentiation (LTP) at perforant path synapses is highly correlated with increased expression of Egr and AP-1 transcription factors in rat dentate gyrus granule cells. We have investigated whether increased transcription factor levels are reflected in increased transcription factor activity by assessing Egr and AP-I DNA binding activity using gel shift assays. LTP produced an increase in binding to the Egr element, which was NMDA receptor-dependent and correlated closely with our previously reported increase in Egr-1 (zif/268) protein levels. Supershift analysis confirmed involvement of Egr-1, but not Egr-2 in the DNA binding activity. AP-1 DNA binding was also rapidly elevated in parallel with protein levels, however, the peak increase in activity was delayed until 4 h, a time point when we have previously shown that only jun-D protein was elevated. These data indicate that binding of Egr-1 and AP-1 to their response elements is increased in two phases. This may result in activation of distinct banks of target genes which contribute to the establishment of persistent LTP. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
The peroxisome proliferator-activated receptors (PPAR) are ligand-activated transcription factors. There are three genes that code for the PPAR isoforms: PPAR alpha, PPAR beta and PPAR gamma. In the present review, studies characterizing the various PPAR isoforms are discussed. Peroxisome proliferator-activated receptor alpha has been implicated in the lipid-lowering effects of the fibrate drugs. Peroxisome proliferator-activated receptor gamma has a clear role in adipocyte differentiation and is therapeutically targeted by the thiazolidinedione drugs for the treatment of type II diabetes. The physiological role of PPAR beta is less well understood but, as described in the present review, recent studies have implicated it with a role in colon cancer. In the present review, particular attention is focused on the role of PPAR in the regulation of expression of proteins associated with cell cycle control and tumorigenesis.
Resumo:
This study focused on the DNA-binding activity and protein expression of the transcription factors Egr-1 and Egr-3 in the rat brain cortex and hippocampus after chronic or acute ethanol exposure. DNA-binding activity was reduced in both regions after chronic ethanol exposure and was restored to the level of the pair-fed group at 16 h of withdrawal. Cortical Egr-1 protein levels were not altered by chronic ethanol exposure but increased 16 h after withdrawal, thus mirroring DNA-binding activity. In contrast, Egr-3 protein levels did not undergo any change. There was no change in the level of either protein in the hippocampus. Immunohistochemistry revealed a region-selective change in immunopositive cells in the cortex and hippocampus. Finally, an acute bolus dose of ethanol did not affect Egr DNA-binding activity and ethanol treatment did not alter the DNA-binding activity or protein levels of the transcription factor Spl. These observations suggest that chronic exposure to ethanol has region-selective effects on the DNA-binding activity and protein expression of Egr-1 and Egr-3 transcription factors in the rat brain. These changes occur after prolonged ethanol exposure and may thus reflect neuroadaptive changes associated with physical dependency and withdrawal. These effects are also transcription factor-selective. Clearly, protein expression is not the sole mediator of the changes in DNA-binding activity and chronic ethanol exposure must have effects on modulatory agents of Egr DNA-binding activity. (C) 2000 Elsevier Science Ltd, All rights reserved.