50 resultados para thermal distortion
Resumo:
Mass spectrometric U-series dating of speleothems from Tangshan Cave, combined with ecological and paleoclimatic evidence, indicates that Nanjing Man, a typical Homo erectus morphologically correlated with Peking Man at Zhoukoudian, should be at least 580 k.y. old, or more likely lived during the glacial oxygen isotope stage 16 (similar to 620 ka). Such an age estimate, which is similar to 270 ka older than previous electron spin resonance and alpha counting U-series dates, has significant implications for the evolution of Asian H. erectus. Dentine and enamel samples from the coexisting fossil layer yield significantly younger apparent ages, that of the enamel sample being only less than one-fourth of the minimum age of Nanjing Man. This suggests that U uptake history is far more complex than existing models can handle. As a result, great care must be taken in the interpretation of electron spin resonance and U-series dates of fossil teeth.
Resumo:
The microwave and thermal cure processes for the epoxy-amine systems N,N,N',N'-tetraglycidyl-4,4'-diaminodiphenyl methane (TGDDM) with diaminodiphenyl sulfone (DDS) and diaminodiphenyl methane (DDM) have been investigated. The DDS system was studied at a single cure temperature of 433 K and a single stoichiometry of 27 wt% and the DDM system was studied at two stoichiometries, 19 and 32 wt%, and a range temperatures between 373 and 413 K. The best values the kinetic rate parameters for the consumption of amines have been determined by a least squares curve Ft to a model for epoxy-amine cure. The activation energies for the rate parameters for the MY721/DDM system were determined as was the overall activation energy for the cure reaction which was found to be 62 kJ mol(-1). No evidence was found for any specific effect of the microwave radiation on the rate parameters, and the systems were both found to be characterized by a negative substitution effect. Copyright (C) 2001 John Wiley & Sons, Ltd.
Resumo:
Differential scanning calorimetric (DSC) and thermogravimetric analysis (TGA) have been used to study the thermal decomposition, the melting behavior and low-temperature transitions of copolymers obtained by radiation-induced grafting of styrene onto poly (tetrafluoroethylene- perfluoropropylvinylether) (PFA) substrates. PFA with different contents of perfluoropropylvinylether (PPVE) as a comonomer have been investigated. A two step degradation pattern was observed from TGA thermograms of all the grafted copolymers, which was attributed to degradation of PSTY followed by the degradation of the PFA backbone at higher temperature. One broad melting peak can be identified for all copolymers, which has two components in the samples with higher PPVE content. The melting peak, crystal-crystal transition and the degree of crystallinity of the grafted copolymers increases with radiation grafting up to 50 kGy, followed by a decrease at higher doses. No such decrease was observed in the ungrafted PFA samples after irradiation. This indicated that the changes in the heats of transitions and crystallinity at low doses are due to the radiation effects on the microstructure of PFA (chain scission), whereas at higher doses the grafted PSTY is the driving force behind these changes. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
The Australian Coal Industry Research Laboratory (ACIRL) furnace is scaled to simulate slagging and fouling in operating boilers. This requires that the gas and target temperatures, the heat flux, and the flow pattern be the same as those in real boilers. The gas and target temperatures are maintained by insulating the wall and cooling the target respectively. The flow pattern of a small burner cannot be the same as a large furnace. However, this flow pattern is partially compensated for by placing the slagging panels in three vertical locations. The paper develops the models of radiant heat transfer from the flame to the deposits both in pilot-scale and full-scale furnaces. They are used to compare the effective radiant heat transfer of the pilot- and full-scale furnaces. The experimental data both from the pilot- and full-scale furnaces are used to verify the incident heat flux and temperature profiles in the pilot- and full-scale furnaces. The results showed that the thermal condition in the pilot-scale furnace meets the requirements for studying the slagging regarding the gas temperature and the incident heat flux, particularly for the panel #1. The gas temperature in the convective section also meets the requirement for studying the fouling.
Resumo:
Symptoms of bladder irritability are common after incontinence surgery but their cause is unknown. This study tests the hypothesis that irritative symptoms after colposuspension are due to distortion of the trigone. As part of longitudinal follow-up studies, 175 women were examined 6 months to 12 years after either an open or a laparoscopic Burch colposuspension. The main outcome measures were symptoms of bladder irritability (frequency, nocturia and urge incontinence) and ultrasound findings (bladder neck position at rest and on Valsalva, the presence of a colposuspension ridge, ridge depth and ridge distance, and trigonal angle). Two positive associations between ultrasound parameters and symptoms of bladder irritability were observed: urge incontinence was more likely in the presence of bladder neck funneling, and women with nocturia had a higher trigonal angle. Increased distortion of the trigone was associated with a reduced incidence of urge incontinence in the subgroup of patients after laparoscopic colposuspension. The data presented in this study do not support the hypothesis that symptoms of bladder irritability are due to trigonal distortion or overelevation.
Resumo:
We examined the burst swimming performance of two Antarctic fishes, Trematomus bernacchii and T. centronotus, at five temperatures between -1 degreesC and 10 degreesC. As Antarctic fishes are considered one of the most cold specialised and stenothermal of all ectotherms, we predicted they would possess a narrow thermal performance breadth for burst swimming and a correlative decrease in performance at high temperatures. Burst swimming was assessed by videotaping swimming sequences with a 50-Hz video camera and analysing the sequences frame-by-frame to determine maximum velocity, the distance moved throughout the initial 200 ms, and the time taken to reach maximum velocity. In contrast to our prediction, we found both species possessed a wide thermal performance breadth for burst swimming. Although maximum swimming velocity for both T. bernacchii and T. centronotus was significantly highest at 6 degreesC, maximum velocity at ah other test temperatures was less than 20% lower. Thus, it appears that specialisation to a highly stable and cold environment is not necessarily associated with a narrow thermal performance breadth for burst swimming in Antarctic fish. We also examined the ability of the Antarctic fish Pagothenia borchgrevinki to acclimate their burst-swimming performance to different temperatures. We exposed P, borchgrevinki to either -1 degreesC or 4 degreesC for 4 weeks and tested their burst-swimming performance at four temperatures between -1 degreesC and 10 degreesC. Burst-swimming performance of Pagothenia borchgrevinki was unaffected by exposure to either -1 degreesC or 4 degreesC for 4 weeks. Maximum swimming velocity of both acclimation groups was thermally independent over the total temperature range of -1 degreesC to 10 degreesC. Therefore, the loss of any capacity to restructure the phenotype and an inability to thermally acclimate swimming performance appears to be associated with inhabiting a highly stable thermal environment.
Resumo:
We determined the maximum sustained swimming speed (U-crit), and resting and maximum ventilation rates of the Antarctic fish Pagothenia borchgrevinki at five temperatures between -1degreesC and 8degreesC. We also determined resting metabolic rate (VO2) at -1degreesC, 2degreesC, and 4degreesC. U-crit of P. borchgrevinki was highest at -1degreesC (2.7+/-0.1 BL s(-1)) and rapidly decreased with temperature, representing a thermal performance breadth of only 5degreesC. This narrow thermal performance supports our prediction that specialisation to the subzero Antarctic marine environment is associated with a physiological trade-off in performance at high temperatures. Resting oxygen consumption and ventilation rate increased by more than 200% across the temperature range, which most likely contribute to the decrease in aerobic swimming capabilities at higher temperatures. (C) 2002 Published by Elsevier Science Ltd.
Resumo:
We demonstrate that the time-dependent projected Gross-Pitaevskii equation (GPE) derived earlier [M. J. Davis, R. J. Ballagh, and K. Burnett, J. Phys. B 34, 4487 (2001)] can represent the highly occupied modes of a homogeneous, partially-condensed Bose gas. Contrary to the often held belief that the GPE is valid only at zero temperature, we find that this equation will evolve randomized initial wave functions to a state describing thermal equilibrium. In the case of small interaction strengths or low temperatures, our numerical results can be compared to the predictions of Bogoliubov theory and its perturbative extensions. This demonstrates the validity of the GPE in these limits and allows us to assign a temperature to the simulations unambiguously. However, the GPE method is nonperturbative, and we believe it can be used to describe the thermal properties of a Bose gas even when Bogoliubov theory fails. We suggest a different technique to measure the temperature of our simulations in these circumstances. Using this approach we determine the dependence of the condensate fraction and specific heat on temperature for several interaction strengths, and observe the appearance of vortex networks. Interesting behavior near the critical point is observed and discussed.
Resumo:
The microwave and thermal cure processes for the epoxy-amine systems (epoxy resin diglycidyl ether of bisphenol A, DGEBA) with 4,4'-diaminodiphenyl sulphone (DDS) and 4,4'-diaminodiphenyl methane (DDM) have been investigated for 1:1 stoichiometries by using fiber-optic FT-NIR spectroscopy. The DGEBA used was in the form of Ciba-Geigy GY260 resin. The DDM system was studied at a single cure temperature of 373 K and a single stoichiometry of 20.94 wt% and the DDS system was studied at a stoichiometry of 24.9 wt% and a range of temperatures between 393 and 443 K. The best values of the kinetic rate parameters for the consumption of amines have been determined by a least squares curve fit to a model for epoxy/amine cure. The activation energies for the polymerization of the DGEBA/DDS system were determined for both cure processes and found to be 66 and 69 kJ mol(-1) for the microwave and thermal cure processes, respectively. No evidence was found for any specific effect of the microwave radiation on the rate parameters, and the systems were both found to be characterized by a negative substitution effect. Copyright (C) 2002 John Wiley Sons, Ltd.
Resumo:
Evoked otoacoustic emissions have demonstrated potential for application in the community-based hearing screening of paediatric populations. Distortion-product otoacoustic emissions (DPOAEs), as opposed to transient evoked otoacoustic emissions (TEOAEs), have not been extensively researched in this regard. The current study aimed to describe the range of DPOAE values obtained in a large cohort (1576 ears) of 6-year-old children in school settings and to examine possible ear asymmetry, gender and history of ear infection effects on the data. Results indicated a variety of significant effects, particularly in the high frequencies, for DPOAE signal-to-noise ratio. The measurement parameter, DPOAE amplitude (DP-amp), was found to display potentially less clinical applicability due to large standard deviation values. Use of descriptive normative data, as derived in the present investigation, may contribute toward future improvements in the hearing screening of 6-year-old schoolchildren
Resumo:
We propose a new method to investigate the thermal properties of QCD with a small quark chemical potential mu. Derivatives of quark and gluonic observables with respect to mu are computed at mu=0 for two flavors of p4 improved staggered fermions with ma=0.1,0.2 on a 16(3)x4 lattice, and used to calculate the leading order Taylor expansion in mu of the location of the pseudocritical point about mu=0. This expansion should be well behaved for the small values of mu(q)/T(c)similar to0.1 relevant for BNL RHIC phenomenology, and predicts a critical curve T-c(mu) in reasonable agreement with estimates obtained using exact reweighting. In addition, we contrast the case of isoscalar and isovector chemical potentials, quantify the effect of munot equal0 on the equation of state, and comment on the complex phase of the fermion determinant in QCD with munot equal0.
Resumo:
In this paper we analyzed the adsorption of gases and vapors on graphitised thermal carbon black by using a modified DFT-lattice theory, in which we assume that the behavior of the first layer in the adsorption film is different from those of second and higher layers. The effects of various parameters on the topology of the adsorption isotherm were first investigated, and the model was then applied in the analysis of adsorption data of numerous substances on carbon black. We have found that the first layer in the adsorption film behaves differently from the second and higher layers in such a way that the adsorbate-adsorbate interaction energy in the first layer is less than that of second and higher layers, and the same is observed for the partition function. Furthermore, the adsorbate-adsorbate and adsorbate-adsorbent interaction energies obtained from the fitting are consistently lower than the corresponding values obtained from the viscosity data and calculated from the Lorentz-Berthelot rule, respectively.
Resumo:
Vapotronics Inc. is developing the thermal inkjet (TIJ) technology used extensively in the printer industry to create a digital aerosol inhaler for the inhalation of therapeutics for local and systemic delivery. The operation of thermal inkjet printers requires generation of high temperatures and vaporization of the liquid formulation to effect droplet ejection. A study was conducted to develop formulations that would permit the generation of aerosols of therapeutic proteins without damage to the inkjet system or degradation of the proteins. Two proteins, human growth hormone and insulin, were formulated and aerosolized. The aerosol was collected and subjected to assays to compare the physicochemical and biological activities of these proteins before and after aerosolization. In each case, there was no significant changes to the proteins as a result of the aerosolization, providing evidence that TIJ can be used for aerosolizing solutions of protein therapeutics.