93 resultados para theory and systems
Resumo:
Environmental conditions play a significant role in the economic success of aquaculture. This article classifies environmental factors in a way that facilitates economic analysis of their implications for the selection of aquaculture species and systems. The implication of on-farm as on-site environmental conditions for this selection are considered first using profit-possibility frontiers and taking into account the biological law of environmental tolerance. However, in selecting, recommending and developing aquaculture species and systems, it is often unrealistic to assume the degree of managerial efficiency implied by the profit-possibility function. It is appropriate to take account of the degree of managerial inefficiency that actually exists, not all of which may be capable of being eliminated. Furthermore, experimental R&D should be geared to on-farm conditions, and the variability of these conditions needs to be taken into account. Particularly in shared water bodies, environmental spillovers between aquaculturalists can be important and as shown theoretically, can influence the socially optimal selection of aquaculture species and systems. Similarly, aquaculture can have environmental consequences for the rest of the community. The social economic implications of this for the selection of aquaculture species and systems are analyzed. Some paradoxical results are obtained. For example, if the quality of social governance of aquaculture is poor, aquaculture species and systems that cause a slow rate of environmental deterioration may be socially less satisfactory than those that cause a rapid rate of such deterioration. Socially optimal choice of aquaculture species and systems depends not only on their biophysical characteristics and market conditions but also on the prevailing state of governance of aquaculture. Failure to consider the last aspect can result in the introduction of new aquaculture species (and systems) doing more social harm than good.
Resumo:
We extend the earlier model of condensate growth of Davis et at (Davis M J, Gardiner C W and Ballagh R J 2000 Phys. Rev. A 62 063608) to include the effect of gravity in a magnetic trap. We carry out calculations to model the experiment reported by Kohl et al (Kohl M, Davis M J, Gardiner C W, Hansch T and Esslinger T 2001 Preprint cond-mat/0106642) who study the formation of a rubidium Bose-Einstein condensate for a range of evaporative cooling parameters. We find that, in the regime where our model is valid, the theoretical curves agree with all the experimental data with no fitting parameters. However, for the slowest cooling of the gas the theoretical curve deviates significantly from the experimental curves. It is possible that this discrepancy may be related to the formation of a quasicondensate.
Resumo:
Increasing older people's participation in society is important in ageing policies worldwide. There is a need to understand the challenges for health professionals of transforming policy on participation into liberating social change practices on the ground. This paper explores the meaning, theory and practice of participation. It uses the example of a work in progress project that has attempted to address structural barriers to older people's participation within an Australian aged care facility, to illustrate theoretical and practice principles surrounding participation.
Resumo:
This article uses data for Nepal to test contemporary hypotheses about the remitting behaviour and associated motives of rural-to-urban migrants and to consider the likely impact of such remittances on rural development. Possibilities for inheritance, degree of family attachment, likelihood of eventual return to place of origin and family investment in the education of the migrants are found to be significant influences on levels of remittances by Nepalese migrants. However, in Nepal, remittances do not seem to result in long-term capital investment in rural areas and so may not promote long-term development of these areas.
Resumo:
Modeling physiological processes using tracer kinetic methods requires knowledge of the time course of the tracer concentration in blood supplying the organ. For liver studies, however, inaccessibility of the portal vein makes direct measurement of the hepatic dual-input function impossible in humans. We want to develop a method to predict the portal venous time-activity curve from measurements of an arterial time-activity curve. An impulse-response function based on a continuous distribution of washout constants is developed and validated for the gut. Experiments with simultaneous blood sampling in aorta and portal vein were made in 13 anesthetized pigs following inhalation of intravascular [O-15] CO or injections of diffusible 3-O[ C-11] methylglucose (MG). The parameters of the impulse-response function have a physiological interpretation in terms of the distribution of washout constants and are mathematically equivalent to the mean transit time ( T) and standard deviation of transit times. The results include estimates of mean transit times from the aorta to the portal vein in pigs: (T) over bar = 0.35 +/- 0.05 min for CO and 1.7 +/- 0.1 min for MG. The prediction of the portal venous time-activity curve benefits from constraining the regression fits by parameters estimated independently. This is strong evidence for the physiological relevance of the impulse-response function, which includes asymptotically, and thereby justifies kinetically, a useful and simple power law. Similarity between our parameter estimates in pigs and parameter estimates in normal humans suggests that the proposed model can be adapted for use in humans.
Resumo:
Adsorption of nitrogen, argon, methane, and carbon dioxide on activated carbon Norit R1 over a wide range of pressure (up to 50 MPa) at temperatures from 298 to 343 K (supercritical conditions) is analyzed by means of the density functional theory modified by incorporating the Bender equation of state, which describes the bulk phase properties with very high accuracy. It has allowed us to precisely describe the experimental data of carbon dioxide adsorption slightly above and below its critical temperatures. The pore size distribution (PSD) obtained with supercritical gases at ambient temperatures compares reasonably well with the PSD obtained with subcritical nitrogen at 77 K. Our approach does not require the skeletal density of activated carbon from helium adsorption measurements to calculate excess adsorption. Instead, this density is treated as a fitting parameter, and in all cases its values are found to fall into a very narrow range close to 2000 kg/m(3). It was shown that in the case of high-pressure adsorption of supercritical gases the PSD could be reliably obtained for the range of pore width between 0.6 and 3 run. All wider pores can be reliably characterized only in terms of surface area as their corresponding excess local isotherms are the same over a practical range of pressure.
Resumo:
We present new simulation results for the packing of single-center and three-center models of carbon dioxide at high pressure in carbon slit pores. The former shows a series of packing transitions that are well described by our density functional theory model developed earlier. In contrast, these transitions are absent for the three-center model. Analysis of the simulation results shows that alternations of flat-lying molecules and rotated molecules can occur as the pore width is increased. The presence or absence of quadrupoles has negligible effect on these high-density structures.