41 resultados para symbionts
Resumo:
Recent episodes of mass coral bleaching, the loss of symbiotic dinoflagellates or photosynthetic pigment from hermatypic corals, have been triggered by elevated sea temperatures. Photosynthetic irradiance is an important secondary factor. Host based pigments (pocilloporins or Green Fluorescent Protein homologues) have been proposed to reduce the impact of elevated temperature by shading the dinoflagellate symbionts of corals, thereby reducing light stress. This study investigates this phenomenon in the reef-building coral Acropora aspera from Heron Island Research Station (Great Barrier Reef, Australia), which occurs as 3 distinct colour morphs. Experimental data showed that the host pigments are photoprotective at normal temperatures or
Resumo:
Explants of the hard coral Seriatopora hystrix were exposed to sublethal concentrations of the herbicide diuron DCMU (N'-(3,4-dichlorophenyl,-N,N-dimethylurea)) and the heavy metal copper. Pulse amplitude modulated (PAM) chlorophyll fluorescence techniques were used to assess the effects on the photosynthetic efficiency of the algal symbionts in the tissue (in Symbio), and chlorophyll fluorescence and counts of symbiotic algae (normalised to surface area) were used to assess the extent of coral bleaching. At 30 mug DCMU l(-1), there was a reduction in both the maximum effective quantum yield (DeltaF/F-m') and maximum potential quantum yield (F-v/F-m) of the algal symbionts in symbio. Corals subsequently lost their algal symbionts and discoloured (bleached), especially on their upper sunlight-exposed surfaces. At the same DCMU concentration but under low light (5% of growth irradiance), there was a marked reduction in DeltaF/F-m' but only a slight reduction in F-v/F-m and slight loss of algae. Loss of algal symbionts was also noted after a 7 d exposure to concentrations as low as 10 mug DCMU l(-1) under normal growth irradiance, and after 14 d exposure to 10 mug DCMU l(-1) under reduced irradiance. Collectively the results indicate that DCMU-induced bleaching is caused by a light-dependent photoinactivation of algal symbionts, and that bleaching occurs when F-v/F-n, (measured 2 h after sunset) is reduced to a value of less than or equal to 0.6. Elevated copper concentrations (60 mug Cu l(-1) for 10 h) also induced a rapid bleaching in S. hystrix but without affecting the quantum yield of the algae in symbio. Tests with isolated algae indicated that substantially higher concentrations (300 mug Cu l(-1) for 8 h) were needed to significantly reduce the quantum yield. Thus, copper-induced bleaching occurs without affecting the algal photosynthesis and may be related to effects on the host (animal). It is argued that warm-water bleaching of corals resembles both types of chemically induced bleaching, suggesting the need for an integrated model of coral bleaching involving the effect of temperature on both host (coral) and algal symbionts.
Resumo:
Ten strains identified as marine actinomycetes related to the 'Salinospora ' group previously reported only from marine sediments were isolated from the Great Barrier Reef marine sponge Pseudoceratina clavata. The relationship of the isolates to 'Salinospora' was confirmed by phylogenetic analysis of 16S rRNA gene sequences. Colony morphology and pigmentation, occurrence and position of spores, and salinity requirements for growth were all consistent with this relationship. Genes homologous to beta-ketosynthase, an enzyme forming part of a polyketide synthesis complex, were retrieved from these isolates; these genes shared homology with other Type I ketosynthase genes, and phylogenetic comparison with amino acid sequences derived from database beta-ketosynthase genes was consistent with the close relationship of these isolates to the actinomycetes. Primers based on 16S rRNA gene sequences and designed for targeting amplification of members of the 'Salinospora' group via polymerase chain reaction have been used to demonstrate occurrence of these actinomycetes within the sponge tissue. In vitro bioassays of extracts from the isolates for antibiotic activity demonstrated that these actinomycetes have the potential to inhibit other sponge symbionts in vivo, including both Gram-negative and Gram-positive bacteria.
Resumo:
Pre-settlement events play an important role in determining larval success in marine invertebrates with bentho-pelagic life histories, yet the consequences of these events typically are not well understood. The purpose of this study was to examine the pre-settlement impacts of different seawater temperatures on the size and population density of dinoflagellate symbionts in brooded larvae of the Caribbean coral Porites astreoides. Larvae were collected from P. astreoides at 14-20 m depth on Conch Reef (Florida) in June 2002, and incubated for 24 h at 15 temperatures spanning the range 25.1 degrees-30.0 degrees C in mean increments of 0.4 +/- 0.1 degrees C (+/- SD). The most striking feature of the larval responses was the magnitude of change in both parameters across this 5 degrees C temperature range within 24 h. In general, larvae were largest and had the highest population densities of Symbiodinium sp. between 26.4 degrees-27.7 degrees C, and were smallest and had the lowest population densities at 25.8 degrees C and 28.8 degrees C. Larval size and symbiont population density were elevated slightly (relative to the minimal values) at the temperature extremes of 25.1 degrees C and 30 degrees C. These data demonstrate that coral larvae are highly sensitive to seawater temperature during their pelagic phase, and respond through changes in size and the population densities of Symbiodinium sp. to ecologically relevant temperature signals within 24 h. The extent to which these changes are biologically meaningful will depend on the duration and frequency of exposure of coral larvae to spatio-temporal variability in seawater temperature, and whether the responses have cascading effects on larval success and their entry to the post-settlement and recruitment phase.
Resumo:
Photosynthetic endolithic algae and cyanobacteria live within the skeletons of many scleractinians. Under normal conditions, less than 5% of the photosynthetically active radiation (PAR) reaches the green endolithic algae because of the absorbance of light by the endosymbiotic dinoflagellates and the carbonate skeleton. When corals bleach (loose dinoflagellate symbionts), however, the tissue of the corals become highly transparent and photosynthetic microendoliths may be exposed to high levels of both thermal and solar stress. This study explores the consequence of these combined stresses on the phototrophic endoliths inhabiting the skeleton of Montipora monasteriata, growing at Heron Island, on the southern Great Barrier Reef. Endoliths that were exposed to sun after tissue removal were by far more susceptible to thermal photoinhibition and photo-damage than endoliths under coral tissue that contained high concentrations of brown dinoflagellate symbionts. While temperature or light alone did not result in decreased photosynthetic efficiency of the endoliths, combined thermal and solar stress caused a major decrease and delayed recovery. Endoliths protected under intact tissue recovered rapidly and photoacclimated soon after exposure to elevated sea temperatures. Endoliths under naturally occurring bleached tissue of M. monasteriata colonies (bleaching event in March 2004 at Heron Island) acclimated to increased irradiance as the brown symbionts disappeared. We suggest that two major factors determine the outcome of thermal bleaching to the endolith community. The first is the microhabitat and light levels under which a coral grows, and the second is the susceptibility of the coral-dinoflagellates symbiosis to thermal stress. More resistant corals may take longer to bleach allowing endoliths time to acclimate to a new light environment. This in turn may have implications for coral survival.
Resumo:
Extensive coral bleaching Occurred intertidally in early August 2003 in the Capricorn Bunker group (Wistari Reef, Heron and One Tree Islands; Southern Great Barrier Reef). The affected intertidal coral had been exposed to unusually cold (minimum = 13.3degreesC; wet bulb temperature = 9degreesC) and dry winds (44% relative humidity) for 2 d during predawn low tides. Coral bleached in the upper 10 cm of their branches and had less than 0.2 x 10(6) cell cm(-2) as compared with over 2.5 x 10(6), Cell cm(-2) in nonbleached areas. Dark-adapted quantum yields did not differ between symbionts in bleached and nonbleached areas. Exposing symbionts to light, however, led to greater quenching of Photosystem 11 in symbionts in the bleached coral. Bleached areas of the affected colonies had died by September 2003, with areas that were essentially covered by more than 80% living coral decreasing to less than 10% visible living coral cover. By January 2004, coral began to recover, principally from areas of colonies that were not exposed during low tide (i.e., from below dead, upper regions). These data highlight the importance of understanding local weather patterns as well as the effects of longer term trends in global climate.
Resumo:
Hermatypic-zooxanthellate corals track the diel patterns of the main environmental parameters temperature, UV and visible light - by acclimation processes that include biochemical responses. The diel course of solar radiation is followed by photosynthesis rates and thereby elicits simultaneous changes in tissue oxygen tension due to the shift in photosynthesis/respiration balance. The recurrent patterns of sunlight are reflected in fluorescence yields, photosynthetic pigment content and activity of the two protective enzymes superoxide dismutase (SOD) and catalase (CAT), enzymes that are among the universal defenses against free radical damage in living tissue. All of these were investigated in three scleractinian corals: Favia favus, Plerogyra sinuosa and Goniopora lobata. The activity of SOD and CAT in the animal host followed the course of solar radiation, increased with the rates of photosynthetic oxygen production and was correlated with a decrease in the maximum quantum yield of photochemistry in Photosystem H (PSII) (Delta F'/F-m'). SOD and CAT activity in the symbiotic algae also exhibited a light intensity correlated pattern, albeit a less pronounced one. The observed rise of the free-radical-scavenger enzymes, with a time scale of minutes to several hours, is an important protective mechanism for the existence and remarkable success of the unique cnidarian-dinoflagellate associations, in which photosynthetic oxygen production takes place within animal cells. This represents a facet of the precarious act of balancing the photosynthetic production of oxygen by the algal symbionts with their destructive action on all living cells, especially those of the animal host.
Resumo:
Diverse ketosynthase (KS) genes were retrieved from the microbial community associated with the Great Barrier Reef sponge Pseudoceratina clavata. Bacterial isolation and metagenomic approaches were employed. Phylogenetic analysis of 16S rRNA of culturable sponge-associated bacterial communities comprised eight groups over four phyla. Ten KS domains were amplified from four genera of isolates and phylogenetics demonstrated that these KS domains were located in three clusters (actinobacterial, cyanobacterial and trans-AT type). Metagenomic DNA of the sponge microbial community was extracted to explore community KS genes by two approaches: direct amplification of KS domains and construction of fosmid libraries for KS domain screening. Five KS domains were retrieved from polymerase chain reaction (PCR) amplification using sponge metagenome DNA as template and five fosmid clones containing KS domains found using multiplex PCR screening. Analysis of selected polyketide synthase (PKS) from one fosmid showed that the PKS consists of two modules. Open reading frames located up- and downstream of the PKS displayed similarity with membrane synthesis-related proteins such as cardiolipin synthase. Metagenome approaches did not detect KS domains found in sponge isolates. All KS domains from both metagenome approaches formed a single cluster with KS domains originating from metagenomes derived from other sponge species from other geographical regions.
Resumo:
Wolbachia bacteria are common intracellular symbionts of arthropods and have been extensively studied in Drosophila. Most research focuses on two Old Word hosts, Drosophila melanogaster and Drosophila simulans, and does not take into account that some of the Wolbachia associations in these species may have evolved only after their fast global expansion and after the exposure to Wolbachia of previously isolated habitats. Here we looked at Wolbachia of Neotropical Drosophila species. Seventy-one lines of 16 Neotropical Drosophild species sampled in different regions and at different time points were analyzed. Wolbachia is absent in lines of Drosophild willistoni collected before the 1970s, but more recent samples are infected with a strain designated wWiL Wolbachia is absent in all other species of the willistoni group. Polymorphic wWil-related strains were detected in some saltans group species, with D. septentriosaltans being coinfected with at least four variants. Based on wsp and ftsZ sequence data, wWil of D. willistoni is identical to wAu, a strain isolated from D. simulans, but can be discriminated when using a polymorphic minisatellite marker. In contrast to wAu, which infects both germ line and somatic tissues of D. simulans, wWil is found exclusively in the primordial germ line cells of D. willistoni embryos. We report on a pool of closely related Wolbachia strains in Neotropical Drosophila species as a potential source for the wAu strain in D. simulans. Possible evolutionary scenarios reconstructing the infection history of wAu-like Wolbachia in Neotropical Drosophild species and the Old World species D. simulans are discussed.
Resumo:
Coral bleaching (the loss of symbiotic dinoflagellates from reef-building corals) is most frequently caused by high-light and temperature conditions. We exposed the explants of the hermatypic coral Stylophora pistillata to four combinations of light and temperature in late spring and also in late summer. During mid-summer, two NOAA bleaching warnings were issued for Heron Island reef (Southern Great Barrier Reef, Australia) when sea temperature exceeded the NOAA bleaching threshold, and a 'mild' (in terms of the whole coral community) bleaching event occurred, resulting in widespread S. pistillata bleaching and mortality. Symbiotic dinoflagellate biomass decreased by more than half from late spring to late summer (from 2.5x10(6) to 0.8x10(6) dinoflagellates cm(2) coral tissue), and those dinoflagellates that remained after summer became photoinhibited more readily (dark-adapted F (V) : F (M) decreased to (0.3 compared with 0.4 in spring), and died in greater numbers (up to 17% dinoflagellate mortality compared with 5% in the spring) when exposed to artificially elevated light and temperature. Adding exogenous antioxidants (D-mannitol and L-ascorbic acid) to the water surrounding the coral had no clear effect on either photoinhibition or symbiont mortality. These data show that light and temperature stress cause mortality of the dinoflagellate symbionts within the coral, and that susceptibility to light and temperature stress is strongly related to coral condition. Photoinhibitory mechanisms are clearly involved, and will increase through a positive feedback mechanism: symbiont loss promotes further symbiont loss as the light microenvironment becomes progressively harsher.
Resumo:
Monogeneans (flatworms) are among the most host-specific of parasites in general and may be the most host-specific of all fish parasites. Specificity, in terms of a restricted spatial distribution within an environment, is not unique to parasites and is displayed by some fungi, insects, birds, symbionts and pelagic larvae of free-living marine invertebrates. The nature of cues, how habitats are recognised and how interactions between partners are mediated and maintained is of interest across these diverse associations. We review some experiments that demonstrate important factors that contribute to host-specificity at the level of infective stages (larvae of oviparous monogeneans; juveniles of viviparous gyrodactylids) and adult parasites. Recent research on immune responses by fish to monogenean infections is considered. We emphasise the critical importance of host epidermis to the Monogenea. Monogeneans live on host epidermis, they live in its products (e.g. mucus), monopisthocotyleans feed on it, some of its products are attractants and it may be an inhospitable surface because of its immunological activity. We focus attention on fish but reference is made to amphibian hosts. We develop the concept for a potential role in host-speciality by the anterior adhesive areas, either the specialised tegument and/or anterior secretions produced by monogeneans for temporary but firm attachment during locomotion on host epithelial surfaces. Initial contact between the anterior adhesive areas of infective stages and host epidermis may serve two important purposes. (1) Appropriate sense organs or receptors on the parasite interact with a specific chemical or chemicals or with surface structures on host epidermis. (2) A specific but instant recognition or reaction occurs between component(s) of host mucus and the adhesive(s) secreted by monogeneans. The chemical composition of fish skin is known to be species-specific and our preliminary analysis of the chemistry of some monogenean adhesives indicates they are novel proteins that display some differences between parasite families and species. (C) 2000 Australian Society for Parasitology Inc. Published by Elsevier Science Ltd. All rights reserved.