87 resultados para stochastic volatility


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we construct predictor-corrector (PC) methods based on the trivial predictor and stochastic implicit Runge-Kutta (RK) correctors for solving stochastic differential equations. Using the colored rooted tree theory and stochastic B-series, the order condition theorem is derived for constructing stochastic RK methods based on PC implementations. We also present detailed order conditions of the PC methods using stochastic implicit RK correctors with strong global order 1.0 and 1.5. A two-stage implicit RK method with strong global order 1.0 and a four-stage implicit RK method with strong global order 1.5 used as the correctors are constructed in this paper. The mean-square stability properties and numerical results of the PC methods based on these two implicit RK correctors are reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stochastic differential equations (SDEs) arise from physical systems where the parameters describing the system can only be estimated or are subject to noise. Much work has been done recently on developing higher order Runge-Kutta methods for solving SDEs numerically. Fixed stepsize implementations of numerical methods have limitations when, for example, the SDE being solved is stiff as this forces the stepsize to be very small. This paper presents a completely general variable stepsize implementation of an embedded Runge Kutta pair for solving SDEs numerically; in this implementation, there is no restriction on the value used for the stepsize, and it is demonstrated that the integration remains on the correct Brownian path.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A decision theory framework can be a powerful technique to derive optimal management decisions for endangered species. We built a spatially realistic stochastic metapopulation model for the Mount Lofty Ranges Southern Emu-wren (Stipiturus malachurus intermedius), a critically endangered Australian bird. Using diserete-time Markov,chains to describe the dynamics of a metapopulation and stochastic dynamic programming (SDP) to find optimal solutions, we evaluated the following different management decisions: enlarging existing patches, linking patches via corridors, and creating a new patch. This is the first application of SDP to optimal landscape reconstruction and one of the few times that landscape reconstruction dynamics have been integrated with population dynamics. SDP is a powerful tool that has advantages over standard Monte Carlo simulation methods because it can give the exact optimal strategy for every landscape configuration (combination of patch areas and presence of corridors) and pattern of metapopulation occupancy, as well as a trajectory of strategies. It is useful when a sequence of management actions can be performed over a given time horizon, as is the case for many endangered species recovery programs, where only fixed amounts of resources are available in each time step. However, it is generally limited by computational constraints to rather small networks of patches. The model shows that optimal metapopulation, management decisions depend greatly on the current state of the metapopulation,. and there is no strategy that is universally the best. The extinction probability over 30 yr for the optimal state-dependent management actions is 50-80% better than no management, whereas the best fixed state-independent sets of strategies are only 30% better than no management. This highlights the advantages of using a decision theory tool to investigate conservation strategies for metapopulations. It is clear from these results that the sequence of management actions is critical, and this can only be effectively derived from stochastic dynamic programming. The model illustrates the underlying difficulty in determining simple rules of thumb for the sequence of management actions for a metapopulation. This use of a decision theory framework extends the capacity of population viability analysis (PVA) to manage threatened species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We provide a derivation of a more accurate version of the stochastic Gross-Pitaevskii equation, as introduced by Gardiner et al (2002 J. Phys. B: At. Mol. Opt. Phys. 35 1555). This derivation does not rely on the concept of local energy and momentum conservation and is based on a quasiclassical Wigner function representation of a 'high temperature' master equation for a Bose gas, which includes only modes below an energy cut-off ER that are sufficiently highly occupied (the condensate band). The modes above this cutoff (the non-condensate band) are treated as being essentially thermalized. The interaction between these two bands, known as growth and scattering processes, provides noise and damping terms in the equation of motion for the condensate band, which we call the stochastic Gross-Pitaevskii equation. This approach is distinguished by the control of the approximations made in its derivation and by the feasibility of its numerical implementation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The general idea of a stochastic gauge representation is introduced and compared with more traditional phase-space expansions, like the Wigner expansion. Stochastic gauges can be used to obtain an infinite class of positive-definite stochastic time-evolution equations, equivalent to master equations, for many systems including quantum time evolution. The method is illustrated with a variety of simple examples ranging from astrophysical molecular hydrogen production, through to the topical problem of Bose-Einstein condensation in an optical trap and the resulting quantum dynamics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the hypotheses that the recently established Mexican stock index futures market effectively serves the price discovery function, and that the introduction of futures trading has provoked volatility in the underlying spot market. We test both hypotheses simultaneously with daily data from Mexico in the context of a modified EGARCH model that also incorporates possible cointegration between the futures and spot markets. The evidence supports both hypotheses, suggesting that the futures market in Mexico is a useful price discovery vehicle, although futures trading has also been a source of instability for the spot market. Several managerial implications are derived and discussed. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we study the performance of smallholders in a nucleus estate and smallholder (NES) scheme in oil palm production schemein West Sumatra by measuring their technical efficiency using a stochastic frontier production function. Our results indicate a mean technical efficiency of 66%, which is below what we would have expected given the uniformity of the climate, soils and plantation construction among the sample farmers. The use of progressive farmers as a means of disseminating extension advice does not appear to have been successful, and more rigorous farmer selection procedures need to be put in place for similar schemes and for general agricultural extension in future. No clear relationship was established between technical efficiency and the use of female labour, suggesting there is no need to target extension services specifically at female labourers in the household. Finally, education was found to have an unexpectedly negative impact on technical efficiency, indicating that farmers with primary education may be more important than those with secondary and tertiary education as targets of development schemes and extension programs entailing non-formal education. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we construct implicit stochastic Runge-Kutta (SRK) methods for solving stochastic differential equations of Stratonovich type. Instead of using the increment of a Wiener process, modified random variables are used. We give convergence conditions of the SRK methods with these modified random variables. In particular, the truncated random variable is used. We present a two-stage stiffly accurate diagonal implicit SRK (SADISRK2) method with strong order 1.0 which has better numerical behaviour than extant methods. We also construct a five-stage diagonal implicit SRK method and a six-stage stiffly accurate diagonal implicit SRK method with strong order 1.5. The mean-square and asymptotic stability properties of the trapezoidal method and the SADISRK2 method are analysed and compared with an explicit method and a semi-implicit method. Numerical results are reported for confirming convergence properties and for comparing the numerical behaviour of these methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The numerical solution of stochastic differential equations (SDEs) has been focussed recently on the development of numerical methods with good stability and order properties. These numerical implementations have been made with fixed stepsize, but there are many situations when a fixed stepsize is not appropriate. In the numerical solution of ordinary differential equations, much work has been carried out on developing robust implementation techniques using variable stepsize. It has been necessary, in the deterministic case, to consider the best choice for an initial stepsize, as well as developing effective strategies for stepsize control-the same, of course, must be carried out in the stochastic case. In this paper, proportional integral (PI) control is applied to a variable stepsize implementation of an embedded pair of stochastic Runge-Kutta methods used to obtain numerical solutions of nonstiff SDEs. For stiff SDEs, the embedded pair of the balanced Milstein and balanced implicit method is implemented in variable stepsize mode using a predictive controller for the stepsize change. The extension of these stepsize controllers from a digital filter theory point of view via PI with derivative (PID) control will also be implemented. The implementations show the improvement in efficiency that can be attained when using these control theory approaches compared with the regular stepsize change strategy. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses efficient simulation methods for stochastic chemical kinetics. Based on the tau-leap and midpoint tau-leap methods of Gillespie [D. T. Gillespie, J. Chem. Phys. 115, 1716 (2001)], binomial random variables are used in these leap methods rather than Poisson random variables. The motivation for this approach is to improve the efficiency of the Poisson leap methods by using larger stepsizes. Unlike Poisson random variables whose range of sample values is from zero to infinity, binomial random variables have a finite range of sample values. This probabilistic property has been used to restrict possible reaction numbers and to avoid negative molecular numbers in stochastic simulations when larger stepsize is used. In this approach a binomial random variable is defined for a single reaction channel in order to keep the reaction number of this channel below the numbers of molecules that undergo this reaction channel. A sampling technique is also designed for the total reaction number of a reactant species that undergoes two or more reaction channels. Samples for the total reaction number are not greater than the molecular number of this species. In addition, probability properties of the binomial random variables provide stepsize conditions for restricting reaction numbers in a chosen time interval. These stepsize conditions are important properties of robust leap control strategies. Numerical results indicate that the proposed binomial leap methods can be applied to a wide range of chemical reaction systems with very good accuracy and significant improvement on efficiency over existing approaches. (C) 2004 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we discuss the effects of white and coloured noise perturbations on the parameters of a mathematical model of bacteriophage infection introduced by Beretta and Kuang in [Math. Biosc. 149 (1998) 57]. We numerically simulate the strong solutions of the resulting systems of stochastic ordinary differential equations (SDEs), with respect to the global error, by means of numerical methods of both Euler-Taylor expansion and stochastic Runge-Kutta type. (C) 2003 IMACS. Published by Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper gives a review of recent progress in the design of numerical methods for computing the trajectories (sample paths) of solutions to stochastic differential equations. We give a brief survey of the area focusing on a number of application areas where approximations to strong solutions are important, with a particular focus on computational biology applications, and give the necessary analytical tools for understanding some of the important concepts associated with stochastic processes. We present the stochastic Taylor series expansion as the fundamental mechanism for constructing effective numerical methods, give general results that relate local and global order of convergence and mention the Magnus expansion as a mechanism for designing methods that preserve the underlying structure of the problem. We also present various classes of explicit and implicit methods for strong solutions, based on the underlying structure of the problem. Finally, we discuss implementation issues relating to maintaining the Brownian path, efficient simulation of stochastic integrals and variable-step-size implementations based on various types of control.