49 resultados para spinal-cord-injury


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The glycine receptor chloride channel (GlyR) is a member of the nicotinic acetylcholine receptor family of ligand-gated ion channels. Functional receptors of this family comprise five subunits and are important targets for neuroactive drugs. The GlyR is best known for mediating inhibitory neurotransmission in the spinal cord and brain stem, although recent evidence suggests it may also have other physiological roles, including excitatory neurotransmission in embryonic neurons. To date, four alpha-subunits (alpha1 to alpha4) and one beta-subunit have been identified. The differential expression of subunits underlies a diversity in GlyR pharmacology. A developmental switch from alpha2 to alpha1beta is completed by around postnatal day 20 in the rat. The beta-subunit is responsible for anchoring GlyRs to the subsynaptic cytoskeleton via the cytoplasmic protein gephyrin. The last few years have seen a surge in interest in these receptors. Consequently, a wealth of information has recently emerged concerning Glyl? molecular structure and function. Most of the information has been obtained from homomeric alpha1 GlyRs, with the roles of the other subunits receiving relatively little attention. Heritable mutations to human GlyR genes give rise to a rare neurological disorder, hyperekplexia (or startle disease). Similar syndromes also occur in other species. A rapidly growing list of compounds has been shown to exert potent modulatory effects on this receptor. Since GlyRs are involved in motor reflex circuits of the spinal cord and provide inhibitory synapses onto pain sensory neurons, these agents may provide lead compounds for the development of muscle relaxant and peripheral analgesic drugs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Both physical and psychological stressors recruit catecholamine cells (CA) located in the ventrolateral medulla (VLM) and the nucleus of the solitary tract (NTS). In the case of physical stressors, this effect is initiated by signals that first access the central nervous system at or below the level of the medulla. For psychological stressors, however, CA cell recruitment depends on higher structures within the neuraxis. Indeed, we have recently provided evidence of a pivotal role for the medial amygdala (MeA) in this regard, although such a role must involve a relay, as MeA neurons do not project directly to the medulla. However, some of the MeA neurons that respond to psychological stress have been found to project to the hypothalamic paraventricular nucleus (PVN), a structure that provides significant input to the medulla. To determine whether the PVN might regulate medullary CA cell responses to psychological stress, animals were prepared with unilateral injections of the neurotoxin ibotenic acid into the PVN (Experiment 1), or with unilateral injections of the retrograde tracer wheat germ agglutinin-gold (WGA-Au) into the CA cell columns of the VLM or NTS (Experiment 2). Seven days later, animals were subjected to a psychological stressor (restraint; 15 minutes), and their brains were subsequently processed for Fos plus appropriate cytoplasmic markers (Experiment 1), or Fos plus WGA-Au (Experiment 2). PVN lesions significantly suppressed the stress-related induction of Fos in both VLM and NTS CA cells, whereas tracer deposits in the VLM or NTS retrogradely labeled substantial numbers of PVN cells that were also Fos-positive after stress. Considered in concert with previous results, these data suggest that the activation of medullary CA cells in response to psychological stress may involve a critical input from the PVN. (C) 2004 Wiley-Liss, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Motor neuron disease (MND) is characterised by progressive deterioration of the corticospinal tract, brainstem, and anterior horn cells of the spinal cord. There is no pathognomonic test for the diagnosis of MND, and physicians rely on clinical criteria-upper and lower motor neuron signs-for diagnosis. The presentations, clinical phenotypes, and outcomes of MND are diverse and have not been combined into a marker of disease progression. No single algorithm combines the findings of functional assessments and rating scales, such as those that assess quality of life, with biological markers of disease activity and findings from imaging and neurophysiological assessments. Here, we critically appraise developments in each of these areas and discuss the potential of such measures to be included in the future assessment of disease progression in patients with MND.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Adult neural progenitors have been isolated from diverse regions of the CNS using methods which primarily involve the enzymatic digestion of tissue pieces; however, interpretation of these experiments can be complicated by the loss of anatomical resolution during the isolation procedures. We have developed a novel, explant-based technique for the isolation of neural progenitors, Living CNS regions were sectioned using a vibratome and small, well-defined discs of tissue punched out. When Cultured. explants from the cortex, hippocampus, cerebellum, spinal cord, hypothalamus, and caudate nucleus all robustly gave rise to proliferating progenitors. These progenitors were similar in behaviour and morphology to previously characterised multipotent hippocampal progenitor lines. Clones from all regions examined could proliferate from single cells and give rise to secondary neurospheres at a low but consistent frequency. Immunostaining demonstrated that clonal cortical progenitors were able to differentiate into both neurons and glial cells, indicating their multipotent characteristics. These results demonstrate it is possible to isolate anatomically resolved adult neural progenitors from small amounts of tissue throughout the CNS, thus, providing a tool for investigating the frequency and characteristics of progenitor cells from different regions. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose. The aims of this study are to evaluate whether cytochrome P450 (CYP)2D1/2D2-deficient dark agouti (DA) rats and/or CYP2D1/2D2-replete Sprague-Dawley (SD) rats are suitable preclinical models of the human, with respect to mirroring the very low plasma concentrations of metabolically derived oxymorphone seen in humans following oxycodone administration, and to examine the effects of streptozotocin-induced diabetes on the pharmacokinetics of oxycodone and its metabolites, noroxycodone and oxymorphone, in both rodent strains. Methods. High-performance liquid chromatography-electrospray ionization-tandem mass spectrometry was used to quantify the serum concentrations of oxycodone, noroxycodone, and oxymorphone following subcutaneous administration of bolus doses of oxycodone (2 mg/kg) to groups of nondiabetic and diabetic rats. Results. The mean (+/- SEM) areas under the serum concentration vs. time curves for oxycodone and noroxycodone were significantly higher in DA relative to SD rats (diabetic, p < 0.05; nondiabetic, p < 0.005). Serum concentrations of oxymorphone were very low (< 6.9 nM). Conclusions. Both DA and SD rats are suitable rodent models to study oxycodone's pharmacology, as their systemic exposure to metabolically derived oxymorphone (potent mu-opioid agonist) is very low, mirroring that seen in humans following oxycodone administration. Systemic exposure to oxycodone and noroxycodone was consistently higher for DA than for SD rats showing that strain differences predominated over diabetes status.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

GABAergic and glycinergic synaptic transmission is proposed to promote the maturation and refinement of the developing CNS. Here we provide morphological and functional evidence that glycinergic and GABAergic synapses control motoneuron development in a region-specific manner during programmed cell death. In gephyrin-deficient mice that lack all postsynaptic glycine receptor and some GABA(A) receptor clusters, there was increased spontaneous respiratory motor activity, reduced respiratory motoneuron survival, and decreased innervation of the diaphragm. In contrast, limb-innervating motoneurons showed decreased spontaneous activity, increased survival, and increased innervation of their target muscles. Both GABA and glycine increased limb-innervating motoneuron activity and decreased respiratory motoneuron activity in wild-type mice, but only glycine responses were abolished in gephyrin-deficient mice. Our results provide genetic evidence that the development of glycinergic and GABAergic synaptic inputs onto motoneurons plays an important role in the survival, axonal branching, and spontaneous activity of motoneurons in developing mammalian embryos.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

1 The effect of 5-HT and related indolealkylamines on heteromeric recombinant NMDA receptors expressed in Xenopus oocytes was investigated using the two-electrode voltage-clamp recording technique. 2 In the absence of external Mg2+ ions, 5-HT inhibited NMDA receptor-mediated currents in a concentration-dependent manner. The inhibitory effect of 5-HT was independent of the NR1a and NR2 subunit combination. 3 The inhibition of glutamate-evoked currents by 5-HT was use- and voltage-dependent. The voltage sensitivity of inhibition for NR1a+NR2 subunit combinations by 5-HT was similar, exhibiting an e-fold change per similar to20 mV, indicating that 5-HT binds to a site deep within the membrane electric field. 4 The inhibition of the open NMDA receptor by external Mg2+ and 5-HT was not additive, suggesting competition between Mg2+ and 5-HT for a binding site in the NMDA receptor channel. The concentration-dependence curves for 5-HT and 5-methoxytryptamine (5-MeOT) inhibition of NMDA receptor-mediated currents are shifted to the right in the presence of external Mg2+. 5 The related indolealkylamines inhibited glutamate-evoked currents with the following order of inhibitory potency: 5-MeOT = 5-methyltryptamine > tryptamine > 7-methyltryptamine > 5-HTmuch greater than tryptophan melatonin. 6 Taken together, these data suggest that 5-HT and related compounds can attenuate glutamate-mediated excitatory synaptic responses and may provide a basis for drug treatment of excitoxic neurodegeneration.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A captive yellow-tailed black cockatoo (Calyptorhynchus funereus) and 2 free-living tawny frogmouths (Podargus strigoides), both native Australian species, were presented with neurologic signs including depression and pelvic limb paresis and paralysis. Despite supportive treatment, all 3 birds died or were euthanatized. On histologic examination, sections of metastrongyloid nematode larvae were found in the central nervous system of all 3 birds, whereas intact larvae, identified as Angiostrongylus cantonensis, were recovered from the brain and spinal cord of 2 birds. Angiostrongylus cantonensis, the rat lungworm. has an obligatory migratory phase through the host's central nervous system, which can cause severe pathologic lesions. Natural infections in accidental hosts have been documented only in mammals, and to our knowledge, angiostrongyliasis in avian hosts has not been previously reported.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A 12-year-old cat was presented to the University of Queensland's Small Animal Teaching Hospital with a 1-day history of left herniparesis of acute onset, with no evidence of trauma or toxin exposure. Neurological examination findings were consistent with a lesion in the caudal left cervical spinal cord (C6 to C8), which was non-painful and had not progressed since the onset of clinical signs. No other abnormalities were found, although myelography showed a mild swelling involving the caudal cervical and cranial thoracic spinal segments. A diagnosis of suspected fibrocartilaginous embolism was made on the basis of the history, clinical presentation and diagnostic tests results, making this case the first report of a suspected fibrocartilaginous embolism in a cat that returned to normal function.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The human brain assembles an incredible network of over a billion neurons. Understanding how these connections form during development in order for the brain to function properly is a fundamental question in biology. Much of this wiring takes place during embryonic development. Neurons are generated in the ventricular zone, migrate out, and begin to differentiate. However, neurons are often born in locations some distance from the target cells with which they will ultimately form connections. To form connections, neurons project long axons tipped with a specialized sensing device called a growth cone. The growing axons interact directly with molecules within the environment through which they grow. In order to find their targets, axonal growth cones use guidance molecules that can either attract or repel them. Understanding what these guidance cues are, where they are expressed, and how the growth cone is able to transduce their signal in a directionally specific manner is essential to understanding how the functional brain is constructed. In this chapter, we review what is known about the mechanisms involved in axonal guidance. We discuss how the growth cone is able to sense and respond to its environment and how it is guided by pioneering cells and axons. As examples, we discuss current models for the development of the spinal cord, the cerebral cortex, and the visual and olfactory systems. (c) 2005, Elsevier Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the embryonic forebrain, pioneer axons establish a simple topography of dorsoventral and longitudinal tracts. The cues used by these axons during the initial formation of the axon scaffold remain largely unknown. We have investigated the axon guidance role of Neogenin, a member of the immunoglobulin (Ig) superfamily that binds to the chemoattractive ligand Netrin-1, as well as to the chemorepulsive ligand repulsive guidance molecule (RGMa). Here, we show strong expression of Neogenin and both of its putative ligands in the developing Xenopus forebrain. Neogenin loss-of-function mutants revealed that this receptor was essential for axon guidance in an early forming dorsoventral brain pathway. Similar mutant phenotypes were also observed following loss of either RGMa or Netrin-1. Simultaneous partial knock downs of these molecules revealed dosage-sensitive interactions and confirmed that these receptors and ligands were acting in the same pathway. The results provide the first evidence that Neogenin acts as an axon guidance molecule in vivo and support a model whereby Neogenin-expressing axons respond to a combination of attractive and repulsive cues as they navigate their ventral trajectory. (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objective: To evaluate the effectiveness of a programme of static positional stretches and positioning of the stroke-affected shoulder for maintaining shoulder external rotation and decreasing hemiplegic shoulder pain. Design: Randomized controlled trial with pretest and posttest design. Setting: Inpatient rehabilitation unit. Subjects: Thirty-two participants ( 17 treatment, 15 comparison) with a first time stroke who were admitted for rehabilitation. Interventions: Treatment participants completed a programme of static positional stretches of the stroke-affected shoulder twice daily and positioned the stroke-affected upper limb in an armrest support at all other times when seated. Main measures: The main outcome measures were pain-free range of motion into external rotation, pain in the stroke-affected shoulder at rest and with movement, motor recovery and functional independence. Results: All participants demonstrated a significant loss of external rotation ( P = 0.005) with no significant group differences. All participants demonstrated a significant improvement in motor recovery ( P < 0.01) and functional independence ( P < 0.01) with no significant group differences. There were no significant effects for pain. The comparison group recorded a decrease in mean pain reported with movement from admission to discharge, and the treatment group recorded an increase. Conclusions: Participation in the management programme did not result in improved outcomes. The results of this study do not support the application of the programme of static positional stretches to maintain range of motion in the shoulder. The effect of increasing pain for the treatment group requires further investigation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cdca4 (Hepp) was originally identified as a gene expressed specifically in hematopoietic progenitor cells as opposed to hematopoietic stem cells. More recently, it has been shown to stimulate p53 activity and also lead to p53-independent growth inhibition when overexpressed. We independently isolated the murine Cdca4 gene in a genomic expression-based screen for genes involved in mammalian craniofacial development, and show that Cdca4 is expressed in a spatio-temporally restricted pattern during mouse embryogenesis. In addition to expression in the facial primordia including the pharyngeal arches, Cdca4 is expressed in the developing limb buds, brain, spinal cord, dorsal root ganglia, teeth, eye and hair follicles. Along with a small number of proteins from a range of species, the predicted CDCA4 protein contains a novel SERTA motif in addition to cyclin A-binding and PHD bromodomain-binding regions of homology. While the function of the SERTA domain is unknown, proteins containing this domain have previously been linked to cell cycle progression and chromatin remodelling. Using in silico database mining we have extended the number of evolutionarily conserved orthologues of known SERTA domain proteins and identified an uncharacterised member of the SERTA domain family, SERTAD4, with orthologues to date in human, mouse, rat, dog, cow, Tetraodon and chicken. Immunolocalisation of transiently and stably transfected epitope-tagged CDCA4 protein in mammalian cells suggests that it resides predominantly in the nucleus throughout all stages of the cell cycle. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Although glycine receptor Cl- channels (GlyRs) have long been known to mediate inhibitory neurotransmission onto spinal nociceptive neurons, their therapeutic potential for peripheral analgesia has received little attention. However, it has been shown that alpha 3-subunit-containing GlyRs are concentrated into regions of the spinal cord dorsal horn where nociceptive afferents terminate. Furthermore, inflammatory mediators specifically inhibit alpha 3-containing GlyRs, and deletion of the murine alpha 3 gene confers insensitivity to chronic inflammatory pain. This strongly implicates GlyRs in the inflammation-mediated disinhibition of centrally projecting nociceptive neurons. Future therapies aimed at specifically increasing current flux through alpha 3-containing GlyRs may prove effective in providing analgesia.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Members of the Wnt family and their receptors, the Frizzleds, are key regulators of pivotal developmental processes including embryonic patterning, specification of cell fate, and determination of cell polarity. The versatility and complexity of Wnt signaling has been further highlighted by the emergence of a novel family of Wnt receptors, the Ryk family. In mammals and flies, Ryk is a key chemorepulsive axon guidance receptor responsible for the establishment of important axon tracts during nervous system development. Although the function of Ryk is currently best understood with respect to this role, its widespread expression, both in developing tissues and in the adult, suggests that Ryk may regulate many essential biological processes. This hypothesis is supported by the multiple developmental phenotypes apparent in Ryk loss-of-function mice. These mice display a variety of embryonic abnormalities, including disruption of skeletal, craniofacial and cardiac development. Here we review Ryk structure and function focusing on its activity as an axon guidance receptor. (c) 2006 Elsevier Ltd. All rights reserved.