82 resultados para sludge
Resumo:
This paper addresses advanced control of a biological nutrient removal (BNR) activated sludge process. Based on a previously validated distributed parameter model of the BNR activated sludge process, we present robust multivariable controller designs for the process, involving loop shaping of plant model, robust stability and performance analyses. Results from three design case studies showed that a multivariable controller with stability margins of 0.163, 0.492 and 1.062 measured by the normalised coprime factor, multiplicative and additive uncertainties respectively give the best results for meeting performance robustness specifications. The controller robustly stabilises effluent nutrients in the presence of uncertainties with the behaviour of phosphorus accumulating organisms as well as to effectively attenuate major disturbances introduced as step changes. This study also shows that, performance of the multivariable robust controller is superior to multi-loops SISO PI controllers for regulating the BNR activated sludge process in terms of robust stability and performance and controlling the process using inlet feed flowrate is infeasible. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
The 23S rRNA-targeted probes GAM42a and BET42a provided equivocal results with the uncultured gammaproteobacterium 'Candidatus Competibacter phosphatis' where some cells bound GAM42a and other cells bound BET42a in fluorescence in situ hybridization (FISH) experiments. Probes GAM42a and BET42a span positions 1027-1043 in the 23S rRNAand differ from each other by one nucleotide at position 1033. Clone libraries were prepared from PCR products spanning the 16S rRNA genes, intergenic spacer region and 23S rRNA genes from two mixed cultures enriched in 'Candidatus C. phosphatis'. With individual clone inserts, the 16S rDNA portion was used to confirm the source organism as 'Candidatus C. phosphatis' and the 23S rDNA portion was used to determine the sequence of the GAM42a/BET42a probe target region. Of the 19 clones sequenced, 8 had the GAM42a probe target (T at position 1033) and 11 had G at position 1033, the only mismatch with GAM42a. However, none of the clones had the BET42a probe target (A at 1033). Non-canonical base-pairing between the 23S rRNA of 'Candidatus C. phosphatis' with G at position 1033 and GAM42a (G-A) or BET42a (G-T) is likely to explain the probing anomalies. A probe (GAM42_C1033) was optimized for use in FISH, targeting cells with G at position 1033, and was found to highlight not only some 'Candidatus C. phosphatis' cells, but also other bacteria. This demonstrates that there are bacteria in addition to 'Candidatus C. phosphatis' with the GAM42_C1033 probe target and not the BET42a or GAM42a probe target.
Resumo:
The spatial arrangement and metabolic activity of 'Candidatus Competibacter phosphatis' was investigated in granular sludge from an anaerobic-aerobic sequencing batch reactor enriched for glycogen-accumulating organisms. In this process, the electron donor (acetate) and the electron acceptor (oxygen) were supplied sequentially in each phase. The organism, identified by fluorescence in situ hybridisation, was present throughout the granules; however, metabolic activity was limited to a 100-mum-thick layer immediately below the surface of the granules. To investigate the cause of this, oxygen microsensors and a novel microscale biosensor for volatile fatty acids were used in conjunction with chemical staining for intracellular storage polymers. It was found that the limited distribution of activity was caused by mass transport limitation of oxygen into the granules during the aerobic phase. (C) 2003 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.
Resumo:
Fluorescence in situ hybridization (FISH) was performed to analyze the nitrifying microbial communities in an activated sludge reactor (ASR) and a fixed biofilm reactor (FBR) for piggery wastewater treatment. Heterotrophic oxidation and nitrification were occurring simultaneously in the ASR and the COD and nitrification efficiencies depend on the loads. In the FBR nitrification efficiency also depends on ammonium load to the reactor and nitrite was accumulated when free ammonia concentration was higher than 0.2 mg NH3-N/L. FISH analysis showed that ammonia-oxidizing bacteria (NSO1225) and denitrifying bacteria (RRP1088) were less abundant than other bacteria (EUB338) in ASR. Further analysis on nitrifying bacteria in the FBR showed that Nitrosomonas species (NSM156) and Nitrospira species (NSR1156) were the dominant ammonia-oxidizing and nitrite-oxidizing bacteria, respectively, in the piggery wastewater nitrification system.
Resumo:
The development of a strong, active granular sludge bed is necessary for optimal operation of upflow anaerobic sludge blanket reactors. The microbial and mechanical structure of the granules may have a strong influence on desirable properties such as growth rate, settling velocity and shear strength. Theories have been proposed for granule microbial structure based on the relative kinetics of substrate degradation, but contradict some observations from both modelling and microscopic studies. In this paper, the structures of four granule types were examined from full-scale UASB reactors, treating wastewater from a cannery, a slaughterhouse, and two breweries. Microbial structure was determined using fluorescence in situ hybridisation probing with 16S rRNA-directed oligonucleotide probes, and superficial structure and microbial density (volume occupied by cells and microbial debris) assessed using scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The granules were also modelled using a distributed parameter biofilm model, with a previously published biochemical model structure, biofilm modelling approach, and model parameters. The model results reflected the trophic structures observed, indicating that the structures were possibly determined by kinetics. Of particular interest were results from simulations of the protein grown granules, which were predicted to have slow growth rates, low microbial density, and no trophic layers, the last two of which were reflected by microscopic observations. The primary cause of this structure, as assessed by modelling, was the particulate nature of the wastewater, and the slow rate of particulate hydrolysis, rather than the presence of proteins in the wastewater. Because solids hydrolysis was rate limiting, soluble substrate concentrations were very low (below Monod half saturation concentration), which caused low growth rates. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
A denitrifying microbial consortium was enriched in an anoxically operated, methanol-fed sequencing batch reactor (SBR) fed with a mineral salts medium containing methanol as the sole carbon source and nitrate as the electron acceptor. The SBR was inoculated with sludge from a biological nutrient removal activated sludge plant exhibiting good denitrification. The SBR denitrification rate improved from less than 0.02 mg of NO3-.N mg of mixed-liquor volatile suspended solids (MLVSS)(-1) h(-1) to a steady-state value of 0.06 mg of NO3-.N mg of MLVSS-1 h(-1) over a 7-month operational period. At this time, the enriched microbial community was subjected to stable-isotope probing (SIP) with [C-13] methanol to biomark the DNA of the denitrifiers. The extracted [C-13]DNA and [C-12]DNA from the SIP experiment were separately subjected to full-cycle rRNA analysis. The dominant 16S rRNA gene phylotype (group A clones) in the [C-13]DNA clone library was closely related to those of the obligate methylotrophs Methylobacillus and Methylophilus in the order Methylophilales of the Betaproteobacteria (96 to 97% sequence identities), while the most abundant clone groups in the [C-12]DNA clone library mostly belonged to the family Saprospiraceae in the Bacteroidetes phylum. Oligonucleotide probes for use in fluorescence in situ hybridization (FISH) were designed to specifically target the group A clones and Methylophilales (probes DEN67 and MET1216, respectively) and the Saprospiraceae clones (probe SAP553). Application of these probes to the SBR biomass over the enrichment period demonstrated a strong correlation between the level of SBR denitrification and relative abundance of DEN67-targeted bacteria in the SBR community. By contrast, there was no correlation between the denitrification rate and the relative abundances of the well-known denitrifying genera Hyphomicrobium and Paracoccus or the Saprospiraceae clones visualized by FISH in the SBR biomass. FISH combined with microautoradiography independently confirmed that the DEN67-targeted cells were the dominant bacterial group capable of anoxic [C-14] methanol uptake in the enriched biomass. The well-known denitrification lag period in the methanol-fed SBR was shown to coincide with a lag phase in growth of the DEN67-targeted denitrifying population. We conclude that Methylophilales bacteria are the dominant denitrifiers in our SBR system and likely are important denitrifiers in full-scale methanol-fed denitrifying sludges.