54 resultados para silicate surface chemistry


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Expanded polytetrafluoroethylene (ePTFE) membranes were modified by graft copolymerization with methacryloxyethyl phosphate (MOEP) in methanol and 2-butanone (methyl ethyl ketone (MEK)) at ambient temperature using gamma irradiation. The effect of dose rate (0.46 and 4.6 kGyh(-1)), monomer concentration (1-40 %) and solvent were studied and the modified membranes were characterized by weight increase, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). XPS was used to determine the % degree of surface coverage using the C-F (ePTFE membrane) and the C-C (MOEP graft copolymer) peaks. Grafting yield, as well as surface coverage, were found to increase with increasing monomer concentration and were significantly higher for samples grafted in MEK than in methanol solution. SEM images showed distinctly different surface morphologies for the membranes grafted in methanol (smooth) and MEK (globular), hence indicating phase separation of the homopolymer in MEK. We propose that in our system, the non-solvent properties of MEK for the homopolymer play a more important role than solvent chain transfer reactions in determining grafting outcomes. (c) 2005 Society of Chemical Industry.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new approach is developed to analyze the thermodynamic properties of a sub-critical fluid adsorbed in a slit pore of activated carbon. The approach is based on a representation that an adsorbed fluid forms an ordered structure close to a smoothed solid surface. This ordered structure is modelled as a collection of parallel molecular layers. Such a structure allows us to express the Helmholtz free energy of a molecular layer as the sum of the intrinsic Helmholtz free energy specific to that layer and the potential energy of interaction of that layer with all other layers and the solid surface. The intrinsic Helmholtz free energy of a molecular layer is a function (at given temperature) of its two-dimensional density and it can be readily obtained from bulk-phase properties, while the interlayer potential energy interaction is determined by using the 10-4 Lennard-Jones potential. The positions of all layers close to the graphite surface or in a slit pore are considered to correspond to the minimum of the potential energy of the system. This model has led to accurate predictions of nitrogen and argon adsorption on carbon black at their normal boiling points. In the case of adsorption in slit pores, local isotherms are determined from the minimization of the grand potential. The model provides a reasonable description of the 0-1 monolayer transition, phase transition and packing effect. The adsorption of nitrogen at 77.35 K and argon at 87.29 K on activated carbons is analyzed to illustrate the potential of this theory, and the derived pore-size distribution is compared favourably with that obtained by the Density Functional Theory (DFT). The model is less time-consuming than methods such as the DFT and Monte-Carlo simulation, and most importantly it can be readily extended to the adsorption of mixtures and capillary condensation phenomena.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We are using polymer templates to grow artificial artery grafts in vivo for the replacement of diseased blood vessels. We have previously shown that adhesion of macrophages to the template starts the graft formation. We present a study of the mechanics of macrophage adhesion to these templates on a single cell and single bond level with optical tweezers. For whole cells, in vitro cell adhesion densities decreased significantly from polymer templates polyethylene to silicone to Tygon (167, 135, and 65 cells/mm(2)). These cell densities were correlated with the graft formation success rate (50%, 25%, and 0%). Single-bond rupture forces at a loading rate of 450 pN/s were quantified by adhesion of trapped 2-mm spheres to macrophages. Rupture force distributions were dominated by nonspecific adhesion (forces, < 40 pN). On polystyrene, preadsorption of fibronectin or presence of serum proteins in the cell medium significantly enhanced adhesion strength from a mean rupture force of 20 pN to 28 pN or 33 pN, respectively. The enhancement of adhesion by fibronectin and serum is additive (mean rupture force of 43 pN). The fraction of specific binding forces in the presence of serum was similar for polystyrene and polymethyl-methacrylate, but specific binding forces were not observed for silica. Again, we found correlation to in vivo experiments, where the density of adherent cells is higher on polystyrene than on silica templates, and can be further enhanced by fibronectin adsorption. These findings show that in vitro adhesion testing can be used for template optimization and to substitute for in-vivo experiments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Colored wastewater poses a challenge to the conventional wastewater treatment techniques. Solid-liquid phase adsorption has been found to be effective for the removal of dyes from effluent. In this paper, the ability of bentonite as an adsorbent for the removal of a commercial dye, Basic Red 2 (BR2), from an aqueous solution has been investigated under various experimental conditions. The adsorption kinetics was shown to be pseudo-second-order. It was found that bentonite had high adsorption capacity for BR2 due to cation exchange. The adsorption equilibrium data can be fitted well by the Langmuir adsorption isotherm model. The effect of the experimental parameters, such as temperature, salt, and pH was investigated through a number of batch adsorption experiments. It was found that the removal of dye increased with the increase in solution pH. However, the change of temperature (15-45 degrees C) and the addition of sodium chloride were found to have little effect on the adsorption process. The results show that electrostatic interactions are not dominant in the interaction between BR2 and bentonite. It was found that the adsorption was a rapid process with 80-90% of the dye removed within the first 2-3 min. Bentonite as an adsorbent is promising for color removal from wastewater.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have measured the adsorption equilibrium and kinetics of carbon dioxide on a commercially available activated carbon by two methods; permeation and batch adsorption. The two methods are compared and found to yield consistent results. All experiments are performed at low pressure (

Relevância:

80.00% 80.00%

Publicador: