47 resultados para semiparametric adaptive Gaussian Markov random field model


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Feature selection is one of important and frequently used techniques in data preprocessing. It can improve the efficiency and the effectiveness of data mining by reducing the dimensions of feature space and removing the irrelevant and redundant information. Feature selection can be viewed as a global optimization problem of finding a minimum set of M relevant features that describes the dataset as well as the original N attributes. In this paper, we apply the adaptive partitioned random search strategy into our feature selection algorithm. Under this search strategy, the partition structure and evaluation function is proposed for feature selection problem. This algorithm ensures the global optimal solution in theory and avoids complete randomness in search direction. The good property of our algorithm is shown through the theoretical analysis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper proposed a novel model for short term load forecast in the competitive electricity market. The prior electricity demand data are treated as time series. The forecast model is based on wavelet multi-resolution decomposition by autocorrelation shell representation and neural networks (multilayer perceptrons, or MLPs) modeling of wavelet coefficients. To minimize the influence of noisy low level coefficients, we applied the practical Bayesian method Automatic Relevance Determination (ARD) model to choose the size of MLPs, which are then trained to provide forecasts. The individual wavelet domain forecasts are recombined to form the accurate overall forecast. The proposed method is tested using Queensland electricity demand data from the Australian National Electricity Market. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Synthetic aperture radar (SAR) images of resonant buried objects are modelled in the presence of ground surface clutter. The method of moments (MoM) is used to model scattered fields from a resonant buried conductor and clutter is modelled as a bivariant Gaussian distribution. A diffraction stack SAR imaging technique is applied to the ultra-wideband waveforms to give a bipolar signal image. A number of examples have been computed to illustrate the combined effects of SAR processing with resonant targets and clutter. SAR images of different targets show differences which may facilitate target identification. To maximise the peak signal-to-clutter ratio, an image correlation technique is applied and the results are shown.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A migration of Helicoverpa punctigera (Wallengren), Heliothis punctifera (Walker) and Agrotis munda Walker was tracked from Cameron Corner (29degrees00'S, 141degrees00'E) in inland Australia to the Wilcannia region, approximately 400 km to the south-east. A relatively isolated source population was located using a distribution model to predict winter breeding, and confirmed by surveys using sweep netting for larvae. When a synoptic weather pattern likely to produce suitable conditions for migration developed, moths were trapped in the source region. The next morning a simulation model of migration using wind-field data generated by a numerical weather-prediction model was run. Surveys using sweep netting for larvae, trapping and flush counts were then conducted in and around the predicted moth fallout area, approximately 400 km to the south-east. Pollen carried on the probosces of moths caught in this area was compared with that on moths caught in the source area. The survey data and pollen comparisons provided evidence that migration had occurred, and that the migration model gave accurate estimation of the fallout region. The ecological and economic implications of such migrations are discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Sensitivity of output of a linear operator to its input can be quantified in various ways. In Control Theory, the input is usually interpreted as disturbance and the output is to be minimized in some sense. In stochastic worst-case design settings, the disturbance is considered random with imprecisely known probability distribution. The prior set of probability measures can be chosen so as to quantify how far the disturbance deviates from the white-noise hypothesis of Linear Quadratic Gaussian control. Such deviation can be measured by the minimal Kullback-Leibler informational divergence from the Gaussian distributions with zero mean and scalar covariance matrices. The resulting anisotropy functional is defined for finite power random vectors. Originally, anisotropy was introduced for directionally generic random vectors as the relative entropy of the normalized vector with respect to the uniform distribution on the unit sphere. The associated a-anisotropic norm of a matrix is then its maximum root mean square or average energy gain with respect to finite power or directionally generic inputs whose anisotropy is bounded above by a≥0. We give a systematic comparison of the anisotropy functionals and the associated norms. These are considered for unboundedly growing fragments of homogeneous Gaussian random fields on multidimensional integer lattice to yield mean anisotropy. Correspondingly, the anisotropic norms of finite matrices are extended to bounded linear translation invariant operators over such fields.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A two-component mixture regression model that allows simultaneously for heterogeneity and dependency among observations is proposed. By specifying random effects explicitly in the linear predictor of the mixture probability and the mixture components, parameter estimation is achieved by maximising the corresponding best linear unbiased prediction type log-likelihood. Approximate residual maximum likelihood estimates are obtained via an EM algorithm in the manner of generalised linear mixed model (GLMM). The method can be extended to a g-component mixture regression model with the component density from the exponential family, leading to the development of the class of finite mixture GLMM. For illustration, the method is applied to analyse neonatal length of stay (LOS). It is shown that identification of pertinent factors that influence hospital LOS can provide important information for health care planning and resource allocation. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

When studying genotype X environment interaction in multi-environment trials, plant breeders and geneticists often consider one of the effects, environments or genotypes, to be fixed and the other to be random. However, there are two main formulations for variance component estimation for the mixed model situation, referred to as the unconstrained-parameters (UP) and constrained-parameters (CP) formulations. These formulations give different estimates of genetic correlation and heritability as well as different tests of significance for the random effects factor. The definition of main effects and interactions and the consequences of such definitions should be clearly understood, and the selected formulation should be consistent for both fixed and random effects. A discussion of the practical outcomes of using the two formulations in the analysis of balanced data from multi-environment trials is presented. It is recommended that the CP formulation be used because of the meaning of its parameters and the corresponding variance components. When managed (fixed) environments are considered, users will have more confidence in prediction for them but will not be overconfident in prediction in the target (random) environments. Genetic gain (predicted response to selection in the target environments from the managed environments) is independent of formulation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Many studies on birds focus on the collection of data through an experimental design, suitable for investigation in a classical analysis of variance (ANOVA) framework. Although many findings are confirmed by one or more experts, expert information is rarely used in conjunction with the survey data to enhance the explanatory and predictive power of the model. We explore this neglected aspect of ecological modelling through a study on Australian woodland birds, focusing on the potential impact of different intensities of commercial cattle grazing on bird density in woodland habitat. We examine a number of Bayesian hierarchical random effects models, which cater for overdispersion and a high frequency of zeros in the data using WinBUGS and explore the variation between and within different grazing regimes and species. The impact and value of expert information is investigated through the inclusion of priors that reflect the experience of 20 experts in the field of bird responses to disturbance. Results indicate that expert information moderates the survey data, especially in situations where there are little or no data. When experts agreed, credible intervals for predictions were tightened considerably. When experts failed to agree, results were similar to those evaluated in the absence of expert information. Overall, we found that without expert opinion our knowledge was quite weak. The fact that the survey data is quite consistent, in general, with expert opinion shows that we do know something about birds and grazing and we could learn a lot faster if we used this approach more in ecology, where data are scarce. Copyright (c) 2005 John Wiley & Sons, Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We investigate the nonclassicality of a photon-subtracted Gaussian field, which was produced in a recent experiment, using negativity of the Wigner function and the nonexistence of well-behaved positive P function. We obtain the condition to see negativity of the Wigner function for the case including the mixed Gaussian incoming field, the threshold photodetection and the inefficient homodyne measurement. We show how similar the photon-subtracted state is to a superposition of coherent states.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Markov chain Monte Carlo (MCMC) is a methodology that is gaining widespread use in the phylogenetics community and is central to phylogenetic software packages such as MrBayes. An important issue for users of MCMC methods is how to select appropriate values for adjustable parameters such as the length of the Markov chain or chains, the sampling density, the proposal mechanism, and, if Metropolis-coupled MCMC is being used, the number of heated chains and their temperatures. Although some parameter settings have been examined in detail in the literature, others are frequently chosen with more regard to computational time or personal experience with other data sets. Such choices may lead to inadequate sampling of tree space or an inefficient use of computational resources. We performed a detailed study of convergence and mixing for 70 randomly selected, putatively orthologous protein sets with different sizes and taxonomic compositions. Replicated runs from multiple random starting points permit a more rigorous assessment of convergence, and we developed two novel statistics, delta and epsilon, for this purpose. Although likelihood values invariably stabilized quickly, adequate sampling of the posterior distribution of tree topologies took considerably longer. Our results suggest that multimodality is common for data sets with 30 or more taxa and that this results in slow convergence and mixing. However, we also found that the pragmatic approach of combining data from several short, replicated runs into a metachain to estimate bipartition posterior probabilities provided good approximations, and that such estimates were no worse in approximating a reference posterior distribution than those obtained using a single long run of the same length as the metachain. Precision appears to be best when heated Markov chains have low temperatures, whereas chains with high temperatures appear to sample trees with high posterior probabilities only rarely. [Bayesian phylogenetic inference; heating parameter; Markov chain Monte Carlo; replicated chains.]

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Based on the three-dimensional elastic inclusion model proposed by Dobrovolskii, we developed a rheological inclusion model to study earthquake preparation processes. By using the Corresponding Principle in the theory of rheologic mechanics, we derived the analytic expressions of viscoelastic displacement U(r, t) , V(r, t) and W(r, t), normal strains epsilon(xx) (r, t), epsilon(yy) (r, t) and epsilon(zz) (r, t) and the bulk strain theta (r, t) at an arbitrary point (x, y, z) in three directions of X axis, Y axis and Z axis produced by a three-dimensional inclusion in the semi-infinite rheologic medium defined by the standard linear rheologic model. Subsequent to the spatial-temporal variation of bulk strain being computed on the ground produced by such a spherical rheologic inclusion, interesting results are obtained, suggesting that the bulk strain produced by a hard inclusion change with time according to three stages (alpha, beta, gamma) with different characteristics, similar to that of geodetic deformation observations, but different with the results of a soft inclusion. These theoretical results can be used to explain the characteristics of spatial-temporal evolution, patterns, quadrant-distribution of earthquake precursors, the changeability, spontaneity and complexity of short-term and imminent-term precursors. It offers a theoretical base to build physical models for earthquake precursors and to predict the earthquakes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We consider the problems of computing the power and exponential moments EXs and EetX of square Gaussian random matrices X=A+BWC for positive integer s and real t, where W is a standard normal random vector and A, B, C are appropriately dimensioned constant matrices. We solve the problems by a matrix product scalarization technique and interpret the solutions in system-theoretic terms. The results of the paper are applicable to Bayesian prediction in multivariate autoregressive time series and mean-reverting diffusion processes.