145 resultados para seismic response
Resumo:
Negative impacts of noise exposure on health and performance may result in part from learned helplessness, the syndrome of deficits typically produced by exposure to uncontrollable events. People may perceive environmental noise to be uncontrollable, and several effects of noise exposure appear to parallel learned helplessness deficits. In the present socioacoustic survey (N = 1,015), perceived control over aircraft noise correlated negatively with some effects of noise (though not others). Furthermore, these effects were better predicted by perceived control than by noise level. These observational data support the claim that learned helplessness contributes to the effects of noise exposure.
Resumo:
Background: Reports on the effect of HIV-1 infection on healing rates of ulcers are conflicting. Goal: The goal was to determine the etiology and response to treatment of genital ulcer disease (GUD) in relation to HIV-1 infection. Study Design: This was a cohort study of patients with GUD treated with local syndromic management protocols. Results: Among the 587 recruited, the prevalences of infections due to HSV, Treponema pallidum, Chlamydia trachomatis (lymphogranuloma venereum [LGV]), Haemophilus ducreyi, Calymmatobacterium granulomatis, and HIV-1 were 48%, 14%, 11%, 10%, 1%, and 75%, respectively. The prevalence of T pallidum was higher among men (P = 0.03), and an association was seen among HIV-1-seronegatives on univariate and multivariate analyses (P < 0.001; P = 0.01). The prevalence of C trachomatis (LGV) was higher among females (P = 0.004), and an association was seen among HIV-1-seropositives on univariate analysis (P = 0.04). At follow-up, 40/407 (10%) showed a decreased healing tendency, not associated with ulcer etiology or HIV-1 seropositivity. Conclusion: Response to syndromic management of GUD was acceptable and not associated with HIV-1 coinfection.
Resumo:
In their letter, Gogarten et al. question the effectiveness of the epidural regimens across the trial centers. In our original publication (1), we clearly demonstrated that patients in the epidural group had a working epidural block intraoperatively (evidenced by significantly more hypotension) and postoperatively (evidenced by significantly improved pain scores for 3 days).
Resumo:
Activity within motor areas of the cortex begins to increase 1 to 2 s prior to voluntary self-initiated movement (termed the Bereitschaftspotential or readiness potential). There has been much speculation and debate over the precise source of this early premovement activity as it is important for understanding the roles of higher order motor areas in the preparation and readiness for voluntary movement. In this study, we use high-field (3-T) event-related fMRI with high temporal sampling (partial brain volumes every 250 ms) to specifically examine hemodynamic response time courses during the preparation, readiness, and execution of purely self-initiated voluntary movement. Five right-handed healthy volunteers performed a rapid sequential finger-to-thumb movement performed at self-determined times (12-15 trials). Functional images for each trial were temporally aligned and the averaged time series for each subject was iteratively correlated with a canonical hemodynamic response function progressively shifted in time. This analysis method identified areas of activation without constraining hemodynamic response timing. All subjects showed activation within frontal mesial areas, including supplementary motor area (SMA) and cingulate motor areas, as well as activation in left primary sensorimotor areas. The time courses of hemodynamic responses showed a great deal of variability in shape and timing between subjects; however, four subjects clearly showed earlier relative hemodynamic responses within SMA/cingulate motor areas compared with left primary motor areas. These results provide further evidence that the SMA and cingulate motor areas are major contributors to early stage premovement activity and play an important role in the preparation and readiness for voluntary movement. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
One consistent functional imaging finding from patients with major depression has been abnormality of the anterior cingulate cortex (ACC). Hypoperfusion has been most commonly reported, but some studies suggest relative hyperperfusion is associated with response to somatic treatments. Despite these indications of the possible importance of the ACC in depression there have been relatively few cognitive studies ACC function in patients with major depression. The present study employed a series of reaction time (RT) tasks involving selection with melancholic and nonmelancholic depressed patients, as well as age-matched controls. Fifteen patients with unipolar major depression (7 melancholic, 8 nonmelancholic) and 8 healthy age-matched controls performed a series of response selection tasks (choice RT, spatial Stroop, spatial stimulus-response compatibility (SRC), and a combined Stroop + SRC condition). Reaction time and error data were collected. Melancholic patients were significantly slower than controls on all tasks but were slower than nonmelancholic patients only on the Stroop and Stroop + SRC conditions. Nonmelancholic patients did not differ from the control group on any task. The Stroop task seems crucial in differentiating the two depressive groups, they did not differ on the choice RT or SRC tasks. This may reflect differential task demands, the SRC involved symbolic manipulation that might engage the dorsal ACC and dorsolateral prefrontal cortex (DLPFC) to a greater extent than the, primarily inhibitory, Stroop task which may engage the ventral ACC and orbitofrontal cortex (OFC). This might suggest the melancholic group showed a greater ventral ACC-OFC deficit than the nonmelancholic group, while both groups showed similar dorsal ACC-DLPFC deficit.
Resumo:
We would like to thank Drs Greve and Bianchini for their interest in our paper and we agree that psychological factors involved in pain presentations can be complex. However, Drs Greve and Bianchini seem to have missed the point of our study. It was not the aim of this study to investigate psychological factors involved in whiplash injury. On the contrary, the aim of the study was to longitudinally investigate the development of sensory changes from the acute stage of whiplash injury until either recovery or the development of persistent symptoms. The GHQ-28 was used as a broad measure of psychological distress in an attempt to account for the effect of psychological distress on pain threshold measures. The authors may like to note that our later paper specifically investigated the development of psychological changes following whiplash injury
Resumo:
Editor—We reported the study in a transparent fashion and were deliberately cautious in our conclusions. Australia and the United Kingdom are very different with regard to arrangements for primary care, which did not permit us to undertake a preliminary assessment of the eligibility of men for screening before we randomised them and issued half invitations to attend for the ultrasound examination.
Resumo:
We compared the responsiveness of the LGN and the early retinotopic cortical areas to stimulation of the two cone-opponent systems (red - green and blue - yellow) and the achromatic system. This was done at two contrast levels to control for any effect of contrast. MR images were acquired on seven subjects with a 4T Bruker MedSpec scanner. The early visual cortical areas were localised by phase encoded retinotopic mapping with a volumetric analysis (Dumoulin et al, 2003 NeuroImage 18 576 - 587). We initially located the LGN in four subjects by using flickering stimuli in a separate scanning session, but subsequently identified it using the experimental stimuli. Experimental stimuli were sine-wave counterphasing rings (2 Hz, 0.5 cycle deg-1), cardinal for the selective activation of the L/M cone-opponent (RG), S cone-opponent (BY), and achromatic (Ach) systems. A region of interest analysis was performed. When presented at equivalent absolute contrasts (cone contrast = 5% - 6%), the BOLD response of the LGN is strongest to isoluminant red - green stimuli and weakest to blue - yellow stimuli, with the achromatic response falling in between. Area V1, on the other hand, responds best to both chromatic stimuli, with the achromatic response falling below. The key change from the LGN to V1 is a dramatic boost in the relative blue - yellow response, which occurred at both contrast levels used. This greatly enhanced cortical response to blue - yellow relative to the red - green and achromatic responses may be due to an increase in cell number and/or cell response between the LGN and V1. We speculate that the effect might reflect the operation of contrast constancy across colour mechanisms at the cortical level.