115 resultados para rodent malarial parasites


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Numerous invertebrate species form long lasting symbioses with bacteria (Buchner, 1949; Buchner, 1965). One of the most common of these bacterial symbionts is Wolbachia pipientis, which has been estimated to infect anywhere from 15–75% of all insect species (Werren et al., 1995a; West et al., 1998; Jeyaprakash and Hoy, 2000; Werren and Windsor, 2000) as well as many species of arachnids, terrestrial crustaceans and filarial nematodes (O’Neill et al., 1997a; Bandi et al., 1998). In most arthropod associations, Wolbachia act as reproductive parasites manipulating the reproduction of their hosts to enhance their own vertical transmission. There appears to be little direct fitness cost to the infected host besides the costs arising from the reproductive manipulations. However instances have been reported where Wolbachia can be either deleterious (Min and Benzer, 1997; Bouchon et al., 1998) or beneficial (Girin and Boultreau, 1995; Stolk and Stouthamer, 1995; Wade and Chang, 1995; Vavre et al., 1999b; Dedeine et al., 2001) to their hosts. Wolbachia were first described as intracellular Rickettsia-like organisms (RLOs), infecting the gonad cells of the mosquito, Culex pipiens (Hertig and Wolbach, 1924), and were later named 'Wolbachia pipientis' (Hertig, 1936). It was not until the work of Yen and Barr (Yen and Barr, 1971; Yen and Barr, 1973) that Wolbachia were implicated in causing crossing incompatibilities between different mosquito populations (Laven, 1951; Ghelelovitch, 1952). When polymerase chain reaction (PCR) diagnostics for Wolbachia became available, it became clear that this agent was both extremely widespread and also responsible for a range of different reproductive phenotypes in the different hosts it infected (O’Neill et al., 1992; Rousset et al., 1992; Stouthamer et al., 1993). The most common of these are cytoplasmic incompatibility, inducing parthenogenesis, overriding host sex-determination, and male-killing (O’Neill et al., 1997a). As of the time of this writing, more than 450 different Wolbachia strains with unique gene sequences, different phenotypes, and infecting different hosts have been deposited in GenBank and the Wolbachia host database (http://www.wolbachia.sols. uq.edu.au).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wolbachia are intracellular maternally inherited microorganisms that are associated with reproductive abnormalities such as cytoplasmic incompatibility (CI), feminization and parthenogenesis in the various arthropod species they infect. Surveys indicate that these bacteria infect more than 16% of all insect species as well as isopods, mites and nematodes, making Wolbachia one of the most ubiquitous parasites yet described. However, nothing is known about the interactions of this bacterium with the host's immune system. We studied the expression of inducible antimicrobial markers in the adults of two Wolbachia infected insect species, Drosophila simulans and Aedes albopictus. The lack of available immune markers in the mosquito species led us to clone part of the defensin gene from this species, which was found to be very similar to the other mosquito defensins cloned from Anopheles gambiae and Aedes aegypti. Comparisons of the expression pattern of the antibacterial markers between Wolbachia-infected and cured lines, and also between bacteria-challenged and unchallenged adults indicated that Wolbachia does not either constitutively induce or suppress the transcription of these antibacterial genes. In addition, no difference in the transcription of these genes was found between double and single Wolbachia-infected strains or between strains in which Wolbachia has different tissue tropisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Comment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Large-scale patterns of species diversity in the gastrointestinal helminth faunas of the coral reef fish Epinephelus merra (Serranidae) were investigated in French Polynesia and the South Pacific Ocean. The richer barrier reef community in French Polynesia supported richer parasite communities in E. merra than that on the fringing reef. While parasite communities among fish from the same archipelago were similar, differences in potential host species and the distance between archipelagos may have contributed to a qualitative difference in parasite communities between archipelagos. Digenean community diversity in coral reef fishes was greater in the western South Pacific, following similar patterns in free-living species. However, overall species diversity of camallanid nematodes of coral reef fishes does not appear to have been similarly affected.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The molecular mechanism of how insects recognize intruding microorganisms and parasites and distinguish them from own body structures is not well known. We explored evolutionary adaptations in an insect parasitoid host interaction to identify components that interfere with the recognition of foreign objects and cellular encapsulation. Because some parasitoids provide protection for the developing wasp in the absence of an overt suppression of the insect host defense, we analyzed the surface of eggs and symbiotic viruses for protective properties. Here we report on the molecular cloning of a 32-kDa protein (Crp32) that is one of the major protective components. It is produced in the calyx cells of the female wasp ovaries and attached to the surface of the egg and other particles including polydnaviruses. The recombinant protein confers protection to coated objects in a cellular encapsulation assay suggesting that a layer of Crp32 may prevent cellular encapsulation reactions by a local inactivation of the host defense system.