81 resultados para quasi-periodicity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In oligotrophic waters the light spectrum is mostly blue, and therefore the physiological and biochemical responses to blue light occurring in the coral tissue and in the symbiotic algae are important. Examination of the wavelength dependence of two free radical scavenger enzyme activity revealed an increase in activity in the blue light range (440-480 nm) compared to the red (640680 nm) in the full visible light (400-700 nm) range. These data show for the first time the relationship between the action spectra of photosynthesis and the activity of two main antioxidant enzymes in the symbiotic coral Favia favus. It was found that in the animal (host) the enzyme response to the spectral distribution of light was higher than that of the zooxanthellae, probably due to accumulation of free radicals within the host tissue. Furthermore, we found that the activity of these enzymes is affected in nature by the length of the day and night, and in the laboratory, by the duration of the illumination. Changes in the pigment concentrations were also observed in response to growth under the blue region and the whole PAR spectrum, while fluorescence measurements with the fast repetition rate fluorometer (FRRF) showed a decrease in the sigma cross section and a decrease in the quantum yield also in the blue part of the spectrum. These changes of scavenger enzymes activity, pigment concentration and fluorescence yield at different light spectra are vital in acclimatization and survival of corals in shallow water environments with high light radiation. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two experiments were conducted on the nature of expert perception in the sport of squash. In the first experiment, ten expert and fifteen novice players attempted to predict the direction and force of squash strokes from either a film display (occluded at variable time periods before and after the opposing player had struck the ball) or a matched point-light display (containing only the basic kinematic features of the opponent's movement pattern). Experts outperformed the novices under both display conditions, and the same basic time windows that characterised expert and novice pick-up of information in the film task also persisted in the point-light task. This suggests that the experts' perceptual advantage is directly related to their superior pick-up of essential kinematic information. In the second experiment, the vision of six expert and six less skilled players was occluded by remotely triggered liquid-crystal spectacles at quasi-random intervals during simulated match play. Players were required to complete their current stroke even when the display was occluded and their prediction performance was assessed with respect to whether they moved to the correct half of the court to match the direction and depth of the opponent's stroke. Consistent with experiment 1, experts were found to be superior in their advance pick-up of both directional and depth information when the display was occluded during the opponent's hitting action. However, experts also remained better than chance, and clearly superior to less skilled players, in their prediction performance under conditions where occlusion occurred before any significant pre-contact preparatory movement by the opposing player was visible. This additional source of expert superiority is attributable to their superior attunement to the information contained in the situational probabilities and sequential dependences within their opponent's pattern of play.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We analyze the quantum dynamics of radiation propagating in a single-mode optical fiber with dispersion, nonlinearity, and Raman coupling to thermal phonons. We start from a fundamental Hamiltonian that includes the principal known nonlinear effects and quantum-noise sources, including linear gain and loss. Both Markovian and frequency-dependent, non-Markovian reservoirs are treated. This treatment allows quantum Langevin equations, which have a classical form except for additional quantum-noise terms, to be calculated. In practical calculations, it is more useful to transform to Wigner or 1P quasi-probability operator representations. These transformations result in stochastic equations that can be analyzed by use of perturbation theory or exact numerical techniques. The results have applications to fiber-optics communications, networking, and sensor technology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new type of nonlocal currents (quasi-particles), which we call twisted parafermions, and its corresponding twisted Z-algebra are found. The system consists of one spin-1 bosonic field and six nonlocal fields of fractional spins. Jacobi-type identities for the twisted parafermions are derived, and a new conformal field theory is constructed from these currents. As an application, a parafermionic representation of the twisted affine current algebra A(2)((2)) is given.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Silicic volcanic eruptions are typically accompanied by repetitive Long-Period (LP) seismicity that originates from a small region of the upper conduit. These signals have the capability to advance eruption prediction, since they commonly precede a change in the eruption vigour. Shear bands forming along the conduit wall, where the shear stresses are highest, have been linked to providing the seismic trigger. However, existing computational models are unable to generate shear bands at the depths where the LP signals originate using simple magma strength models. Presented here is a model in which the magma strength is determined from a constitutive relationship dependent upon crystallinity and pressure. This results in a depth-dependent magma strength, analogous to planetary lithospheres. Hence, in shallow highly-crystalline regions a macroscopically discontinuous brittle type of deformation will prevail, whilst in deeper crystal-poor regions there will be a macroscopically continuous plastic deformation mechanism. This will result in a depth where the brittle-ductile transition occurs, and here shear bands disconnected from the free-surface may develop. We utilize the Finite Element Method and use axi-symmetric coordinates to model magma flow as a viscoplastic material, simulating quasi-static shear bands along the walls of a volcanic conduit. Model results constrained to the Soufrière Hills Volcano, Montserrat, show the generation of two types of shear bands: upper-conduit shear bands that form between the free-surface to a few 100 metres below it and discrete shear bands that form at the depths where LP seismicity is measured to occur corresponding to the brittle-ductile transition and the plastic shear region. It is beyond the limitation of the model to simulate a seismic event, although the modelled viscosity within the discrete shear bands suggests a failure and healing cycle time that supports the observed LP seismicity repeat times. However, due to the paucity of data and large parameter space available these results can only be considered to be qualitative rather than quantitative at this stage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Turbulent free jets issuing from rectangular slots with various high aspect ratios (15-120) are characterized. The centerline mean and rms velocities are measured using hot-wire anemometry over a downstream distance of up to 160 slot heights at a slot-height-based Reynolds number of 10000. Experimental results suggest that a rectangular jet with sufficiently high aspect ratio (> 15) may be distinguished between three flow zones: an initial quasi-plane-jet zone, a transition zone, and a final quasi-axisymmetric-jet zone. In the quasi-plane-jet zone, the turbulent velocity field is statistically similar, but not identical, to those of a plane jet. (c) 2005 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of incoherent interlayer transport on the interlayer resistance of a layered metal is considered. We find that for both quasi-one-dimensional and quasi-two-dimensional Fermi liquids the angular dependence of the magnetoresistance is essentially the same for coherent and incoherent transport. Consequently, the existence of a three-dimensional Fermi surface is not necessary to explain the oscillations in the magnetoresistance that are seen in many organic conductors as the field direction is varied. [S0031-9007(98)07660-1].