37 resultados para protein chemistry
Resumo:
We have developed a sensitive, non-radioactive method to assess the interaction of transcription factors/DNA-binding proteins with DNA. We have modified the traditional radiolabeled DNA gel mobility shift assay to incorporate a DNA probe end-labeled with a Texas-red fluorophore and a DNA-binding protein tagged with the green fluorescent protein to monitor precisely DNA-protein complexation by native gel electrophoresis. We have applied this method to the DNA-binding proteins telomere release factor-1 and the sex-determining region-Y, demonstrating that the method is sensitive (able to detect 100 fmol of fluorescently labeled DNA), permits direct visualization of both the DNA probe and the DNA-binding protein, and enables quantitative analysis of DNA and protein complexation, and thereby an estimation of the stoichiometry of protein-DNA binding.
Resumo:
Pyrin domain (PYD)-containing proteins are key components of pathways that regulate inflammation, apoptosis, and cytokine processing. Their importance is further evidenced by the consequences of mutations in these proteins that give rise to autoimmune and hyperinflammatory syndromes. PYDs, like other members of the death domain ( DD) superfamily, are postulated to mediate homotypic interactions that assemble and regulate the activity of signaling complexes. However, PYDs are presently the least well characterized of all four DD subfamilies. Here we report the three-dimensional structure and dynamic properties of ASC2, a PYD-only protein that functions as a modulator of multidomain PYD-containing proteins involved in NF-KB and caspase-1 activation. ASC2 adopts a six-helix bundle structure with a prominent loop, comprising 13 amino acid residues, between helices two and three. This loop represents a divergent feature of PYDs from other domains with the DD fold. Detailed analysis of backbone N-15 NMR relaxation data using both the Lipari-Szabo model-free and reduced spectral density function formalisms revealed no evidence of contiguous stretches of polypeptide chain with dramatically increased internal motion, except at the extreme N and C termini. Some mobility in the fast, picosecond to nanosecond timescale, was seen in helix 3 and the preceding alpha 2-alpha 3 loop, in stark contrast to the complete disorder seen in the corresponding region of the NALP1 PYD. Our results suggest that extensive conformational flexibility in helix 3 and the alpha 2-alpha 3 loop is not a general feature of pyrin domains. Further, a transition from complete disorder to order of the alpha 2-alpha 3 loop upon binding, as suggested for NALP1, is unlikely to be a common attribute of pyrin domain interactions.
Resumo:
Group A streptococcus (GAS) is responsible for causing many clinical complications including the relatively benign streptococcal pharyngitis and impetigo. However. if left untreated. these conditions may lead to more severe diseases such as rheumatic fever (RF) and rheumatic heart disease (RHD). These diseases exhibit high morbidity and mortality, Particularly in developing countries and in indigenous populations of affluent countries. Only ever occur following GAS infection, a vaccine offers Promise for their Prevention. As stich, we have investigated the Use of the lipid-core peptide (LCP) system for the development of multi-valent Prophylactic GAS vaccines. The current study has investigated the capacity of this system to adjuvant LIP to four different GAS peptide epitopes. Presented are the synthesis and immunological assessment of tetra-valent and tri-valent GAS LCP systems. We demonstrated their capacity to elicit systemic IgG antibody responses in B10.BR mice to all GAS peptide epitopes. The data also showed that the LCP systems Were self-adjuvanting. These findings are particularly encouraging for the development of multi-valent LCP-based GAS vaccines.
Resumo:
A selection of nine macrocyclic Fe-III/II and Co-III/II transition metal complexes has been chosen to serve as a universal set of mediator-titrants in redox potentiometry of protein samples. The potential range spanned by these mediators is approximately from +300 to -700 mV vs the normal hydrogen electrode, which covers the range of most protein redox potentials accessible in aqueous solution. The complexes employed exhibit stability in both their oxidized and their reduced forms as well as pH-independent redox potentials within the range 6 < pH < 9. The mediators were also chosen on the basis of their very weak visible absorption maxima in both oxidation states, which will enable (for the first time) optical redox potentiometric titrations of proteins with relatively low extinction coefficients. This has previously been impractical with organic mediators, such as indoles, viologens and quinones, whose optical spectra interfere strongly with those of the protein.
Resumo:
Modification of proteins by reactive ethanol metabolites has been known for some time to occur in the liver, the main site of ethanol metabolism. In more recent studies of laboratory animals, similar modifications have been detected in organs with lesser ability to metabolize ethanol, such as skeletal and cardiac muscle and brain. Such modification may alter protein function or form a neoantigen, making it a target for immune attack. We now report an analysis of protein modification derived from ethanol metabolites in human brain tissue by ELISA using adduct-specific antibodies. We obtained autopsy cerebellum samples from 10 alcoholic cerebellar degeneration cases and 10 matched controls under informed written consent from the next of kin and clearance from the UQ Human Ethics Committee. Elevated levels of protein modifications derived from acetaldehyde (unreduced-acetaldehyde and acetaldehyde-advanced glycation end-product adducts), from malondialdehyde (malondialdehyde adducts) and from combined adducts (malondialdehydeacetaldehyde (MAA) adducts) were detected in alcoholic cerebellar degeneration samples when compared to controls. Other adduct types found in liver samples, such as reduced-acetaldehyde and those derived from hydroxyethyl radicals, were not detected in brain samples. This may reflect the different routes of ethanol metabolism in the two tissues. This is the first report of elevated protein modification in alcoholic cerebellar degeneration, and suggests that such modification may play a role in the pathogenesis of brain injury. Supported by NIAAA under grant NIH AA12404 and the NHMRC (Australia) under grant #981723.