62 resultados para process model collection
Resumo:
The classical model of surface layering followed by capillary condensation during adsorption in mesopores, is modified here by consideration of the adsorbate solid interaction potential. The new theory accurately predicts the capillary coexistence curve as well as pore criticality, matching that predicted by density functional theory. The model also satisfactorily predicts the isotherm for nitrogen adsorption at 77.4 K on MCM-41 material of various pore sizes, synthesized and characterized in our laboratory, including the multilayer region, using only data on the variation of condensation pressures with pore diameter. The results indicate a minimum mesopore diameter for the surface layering model to hold as 14.1 Å, below which size micropore filling must occur, and a minimum pore diameter for mechanical stability of the hemispherical meniscus during desorption as 34.2 Å. For pores in-between these two sizes reversible condensation is predicted to occur, in accord with the experimental data for nitrogen adsorption on MCM-41 at 77.4 K.
Resumo:
We consider a branching model, which we call the collision branching process (CBP), that accounts for the effect of collisions, or interactions, between particles or individuals. We establish that there is a unique CBP, and derive necessary and sufficient conditions for it to be nonexplosive. We review results on extinction probabilities, and obtain explicit expressions for the probability of explosion and the expected hitting times. The upwardly skip-free case is studied in some detail.
Resumo:
Previous work has identified several short-comings in the ability of four spring wheat and one barley model to simulate crop processes and resource utilization. This can have important implications when such models are used within systems models where final soil water and nitrogen conditions of one crop define the starting conditions of the following crop. In an attempt to overcome these limitations and to reconcile a range of modelling approaches, existing model components that worked demonstrably well were combined with new components for aspects where existing capabilities were inadequate. This resulted in the Integrated Wheat Model (I_WHEAT), which was developed as a module of the cropping systems model APSIM. To increase predictive capability of the model, process detail was reduced, where possible, by replacing groups of processes with conservative, biologically meaningful parameters. I_WHEAT does not contain a soil water or soil nitrogen balance. These are present as other modules of APSIM. In I_WHEAT, yield is simulated using a linear increase in harvest index whereby nitrogen or water limitations can lead to early termination of grainfilling and hence cessation of harvest index increase. Dry matter increase is calculated either from the amount of intercepted radiation and radiation conversion efficiency or from the amount of water transpired and transpiration efficiency, depending on the most limiting resource. Leaf area and tiller formation are calculated from thermal time and a cultivar specific phyllochron interval. Nitrogen limitation first reduces leaf area and then affects radiation conversion efficiency as it becomes more severe. Water or nitrogen limitations result in reduced leaf expansion, accelerated leaf senescence or tiller death. This reduces the radiation load on the crop canopy (i.e. demand for water) and can make nitrogen available for translocation to other organs. Sensitive feedbacks between light interception and dry matter accumulation are avoided by having environmental effects acting directly on leaf area development, rather than via biomass production. This makes the model more stable across environments without losing the interactions between the different external influences. When comparing model output with models tested previously using data from a wide range of agro-climatic conditions, yield and biomass predictions were equal to the best of those models, but improvements could be demonstrated for simulating leaf area dynamics in response to water and nitrogen supply, kernel nitrogen content, and total water and nitrogen use. I_WHEAT does not require calibration for any of the environments tested. Further model improvement should concentrate on improving phenology simulations, a more thorough derivation of coefficients to describe leaf area development and a better quantification of some processes related to nitrogen dynamics. (C) 1998 Elsevier Science B.V.
Resumo:
A significant problem in the collection of responses to potentially sensitive questions, such as relating to illegal, immoral or embarrassing activities, is non-sampling error due to refusal to respond or false responses. Eichhorn & Hayre (1983) suggested the use of scrambled responses to reduce this form of bias. This paper considers a linear regression model in which the dependent variable is unobserved but for which the sum or product with a scrambling random variable of known distribution, is known. The performance of two likelihood-based estimators is investigated, namely of a Bayesian estimator achieved through a Markov chain Monte Carlo (MCMC) sampling scheme, and a classical maximum-likelihood estimator. These two estimators and an estimator suggested by Singh, Joarder & King (1996) are compared. Monte Carlo results show that the Bayesian estimator outperforms the classical estimators in almost all cases, and the relative performance of the Bayesian estimator improves as the responses become more scrambled.
Resumo:
The Montreal Process indicators are intended to provide a common framework for assessing and reviewing progress toward sustainable forest management. The potential of a combined geometrical-optical/spectral mixture analysis model was assessed for mapping the Montreal Process age class and successional age indicators at a regional scale using Landsat Thematic data. The project location is an area of eucalyptus forest in Emu Creek State Forest, Southeast Queensland, Australia. A quantitative model relating the spectral reflectance of a forest to the illumination geometry, slope, and aspect of the terrain surface and the size, shape, and density, and canopy size. Inversion of this model necessitated the use of spectral mixture analysis to recover subpixel information on the fractional extent of ground scene elements (such as sunlit canopy, shaded canopy, sunlit background, and shaded background). Results obtained fron a sensitivity analysis allowed improved allocation of resources to maximize the predictive accuracy of the model. It was found that modeled estimates of crown cover projection, canopy size, and tree densities had significant agreement with field and air photo-interpreted estimates. However, the accuracy of the successional stage classification was limited. The results obtained highlight the potential for future integration of high and moderate spatial resolution-imaging sensors for monitoring forest structure and condition. (C) Elsevier Science Inc., 2000.
Resumo:
A case sensitive intelligent model editor has been developed for constructing consistent lumped dynamic process models and for simplifying them using modelling assumptions. The approach is based on a systematic assumption-driven modelling procedure and on the syntax and semantics of process,models and the simplifying assumptions.
Resumo:
Item noise models of recognition assert that interference at retrieval is generated by the words from the study list. Context noise models of recognition assert that interference at retrieval is generated by the contexts in which the test word has appeared. The authors introduce the bind cue decide model of episodic memory, a Bayesian context noise model, and demonstrate how it can account for data from the item noise and dual-processing approaches to recognition memory. From the item noise perspective, list strength and list length effects, the mirror effect for word frequency and concreteness, and the effects of the similarity of other words in a list are considered. From the dual-processing perspective, process dissociation data on the effects of length, temporal separation of lists, strength, and diagnosticity of context are examined. The authors conclude that the context noise approach to recognition is a viable alternative to existing approaches.
Resumo:
Quantifying mass and energy exchanges within tropical forests is essential for understanding their role in the global carbon budget and how they will respond to perturbations in climate. This study reviews ecosystem process models designed to predict the growth and productivity of temperate and tropical forest ecosystems. Temperate forest models were included because of the minimal number of tropical forest models. The review provides a multiscale assessment enabling potential users to select a model suited to the scale and type of information they require in tropical forests. Process models are reviewed in relation to their input and output parameters, minimum spatial and temporal units of operation, maximum spatial extent and time period of application for each organization level of modelling. Organizational levels included leaf-tree, plot-stand, regional and ecosystem levels, with model complexity decreasing as the time-step and spatial extent of model operation increases. All ecosystem models are simplified versions of reality and are typically aspatial. Remotely sensed data sets and derived products may be used to initialize, drive and validate ecosystem process models. At the simplest level, remotely sensed data are used to delimit location, extent and changes over time of vegetation communities. At a more advanced level, remotely sensed data products have been used to estimate key structural and biophysical properties associated with ecosystem processes in tropical and temperate forests. Combining ecological models and image data enables the development of carbon accounting systems that will contribute to understanding greenhouse gas budgets at biome and global scales.
Resumo:
The St. Lawrence Island polynya (SLIP) is a commonly occurring winter phenomenon in the Bering Sea, in which dense saline water produced during new ice formation is thought to flow northward through the Bering Strait to help maintain the Arctic Ocean halocline. Winter darkness and inclement weather conditions have made continuous in situ and remote observation of this polynya difficult. However, imagery acquired from the European Space Agency ERS-1 Synthetic Aperture Radar (SAR) has allowed observation of the St. Lawrence Island polynya using both the imagery and derived ice displacement products. With the development of ARCSyM, a high resolution regional model of the Arctic atmosphere/sea ice system, simulation of the SLIP in a climate model is now possible. Intercomparisons between remotely sensed products and simulations can lead to additional insight into the SLIP formation process. Low resolution SAR, SSM/I and AVHRR infrared imagery for the St. Lawrence Island region are compared with the results of a model simulation for the period of 24-27 February 1992. The imagery illustrates a polynya event (polynya opening). With the northerly winds strong and consistent over several days, the coupled model captures the SLIP event with moderate accuracy. However, the introduction of a stability dependent atmosphere-ice drag coefficient, which allows feedbacks between atmospheric stability, open water, and air-ice drag, produces a more accurate simulation of the SLIP in comparison to satellite imagery. Model experiments show that the polynya event is forced primarily by changes in atmospheric circulation followed by persistent favorable conditions: ocean surface currents are found to have a small but positive impact on the simulation which is enhanced when wind forcing is weak or variable.
Resumo:
In order to analyse the effect of modelling assumptions in a formal, rigorous way, a syntax of modelling assumptions has been defined. The syntax of modelling assumptions enables us to represent modelling assumptions as transformations acting on the set of model equations. The notion of syntactical correctness and semantical consistency of sets of modelling assumptions is defined and methods for checking them are described. It is shown on a simple example how different modelling assumptions act on the model equations and their effect on the differential index of the resulted model is also indicated.
Resumo:
A new conceptual model for soil pore-solid structure is formalized. Soil pore-solid structure is proposed to comprise spatially abutting elements each with a value which is its membership to the fuzzy set ''pore,'' termed porosity. These values have a range between zero (all solid) and unity (all pore). Images are used to represent structures in which the elements are pixels and the value of each is a porosity. Two-dimensional random fields are generated by allocating each pixel a porosity by independently sampling a statistical distribution. These random fields are reorganized into other pore-solid structural types by selecting parent points which have a specified local region of influence. Pixels of larger or smaller porosity are aggregated about the parent points and within the region of interest by controlled swapping of pixels in the image. This creates local regions of homogeneity within the random field. This is similar to the process known as simulated annealing. The resulting structures are characterized using one-and two-dimensional variograms and functions describing their connectivity. A variety of examples of structures created by the model is presented and compared. Extension to three dimensions presents no theoretical difficulties and is currently under development.
Resumo:
The collection of spatial information to quantify changes to the state and condition of the environment is a fundamental component of conservation or sustainable utilization of tropical and subtropical forests, Age is an important structural attribute of old-growth forests influencing biological diversity in Australia eucalypt forests. Aerial photograph interpretation has traditionally been used for mapping the age and structure of forest stands. However this method is subjective and is not able to accurately capture fine to landscape scale variation necessary for ecological studies. Identification and mapping of fine to landscape scale vegetative structural attributes will allow the compilation of information associated with Montreal Process indicators lb and ld, which seek to determine linkages between age structure and the diversity and abundance of forest fauna populations. This project integrated measurements of structural attributes derived from a canopy-height elevation model with results from a geometrical-optical/spectral mixture analysis model to map forest age structure at a landscape scale. The availability of multiple-scale data allows the transfer of high-resolution attributes to landscape scale monitoring. Multispectral image data were obtained from a DMSV (Digital Multi-Spectral Video) sensor over St Mary's State Forest in Southeast Queensland, Australia. Local scene variance levels for different forest tapes calculated from the DMSV data were used to optimize the tree density and canopy size output in a geometric-optical model applied to a Landsat Thematic Mapper (TU) data set. Airborne laser scanner data obtained over the project area were used to calibrate a digital filter to extract tree heights from a digital elevation model that was derived from scanned colour stereopairs. The modelled estimates of tree height, crown size, and tree density were used to produce a decision-tree classification of forest successional stage at a landscape scale. The results obtained (72% accuracy), were limited in validation, but demonstrate potential for using the multi-scale methodology to provide spatial information for forestry policy objectives (ie., monitoring forest age structure).
Resumo:
This work studied the structure-hepatic disposition relationships for cationic drugs of varying lipophilicity using a single-pass, in situ rat liver preparation. The lipophilicity among the cationic drugs studied in this work is in the following order: diltiazem. propranolol. labetalol. prazosin. antipyrine. atenolol. Parameters characterizing the hepatic distribution and elimination kinetics of the drugs were estimated using the multiple indicator dilution method. The kinetic model used to describe drug transport (the two-phase stochastic model) integrated cytoplasmic binding kinetics and belongs to the class of barrier-limited and space-distributed liver models. Hepatic extraction ratio (E) (0.30-0.92) increased with lipophilicity. The intracellular binding rate constant (k(on)) and the equilibrium amount ratios characterizing the slowly and rapidly equilibrating binding sites (K-S and K-R) increase with the lipophilicity of drug (k(on) : 0.05-0.35 s(-1); K-S : 0.61-16.67; K-R : 0.36-0.95), whereas the intracellular unbinding rate constant (k(off)) decreases with the lipophilicity of drug (0.081-0.021 s(-1)). The partition ratio of influx (k(in)) and efflux rate constant (k(out)), k(in)/k(out), increases with increasing pK(a) value of the drug [from 1.72 for antipyrine (pK(a) = 1.45) to 9.76 for propranolol (pK(a) = 9.45)], the differences in k(in/kout) for the different drugs mainly arising from ion trapping in the mitochondria and lysosomes. The value of intrinsic elimination clearance (CLint), permeation clearance (CLpT), and permeability-surface area product (PS) all increase with the lipophilicity of drug [CLint (ml . min(-1) . g(-1) of liver): 10.08-67.41; CLpT (ml . min(-1) . g(-1) of liver): 10.80-5.35; PS (ml . min(-1) . g(-1) of liver): 14.59-90.54]. It is concluded that cationic drug kinetics in the liver can be modeled using models that integrate the presence of cytoplasmic binding, a hepatocyte barrier, and a vascular transit density function.
Resumo:
Background: The plasminogen activator system has been proposed to play a role in proteolytic degradation of extracellular matrices in tissue remodeling, including wound healing. The aim of this study was to elucidate the presence of components of the plasminogen activator system during different stages of periodontal wound healing. Methods: Periodontal wounds were created around the molars of adult rats and healing was followed for 28 days. Immunohistochemical analyses of the healing tissues and an analysis of the periodontal wound healing fluid by ELISA were carried out for the detection of tissue-type plasminogen activator (t-PA), urokinase-type plasminogen activator (u-PA), and 2 plasminogen activator inhibitors (PAI-1 and PAI-2). Results: During the early stages (days 1 to 3) of periodontal wound healing, PAI-1 and PAI-2 were found to be closely associated with the deposition of a fibrin clot in the gingival sulcus. These components were strongly associated with the infiltrating inflammatory cells around the fibrin clot. During days 3 to 7, u-PA, PAI-1, and PAI-2 were associated with cells (particularly monocytes/macrophages, fibroblasts, and endothelial cells) in the newly formed granulation tissue. During days 7 to 14, a new attachment apparatus was formed during which PAI-1, PAI-2, and u-PA were localized in both periodontal ligament fibroblasts (PDL) and epithelial cells at sites where these cells were attaching to the root surface. In the periodontal wound healing fluid, the concentration for t-PA increased and peaked during the first week. PAI-2 had a similar expression to t-PA, but at a lower level over the entire wound-healing period. Conclusions: These findings indicate that the plasminogen activator system is involved in the entire process of periodontal wound healing, in particular with the formation of fibrin matrix on the root surface and its replacement by granulation tissue, as well as the subsequent formation of the attachment of soft tissue to the root surface during the later stages of wound repair.
Resumo:
In this work, we present a systematic approach to the representation of modelling assumptions. Modelling assumptions form the fundamental basis for the mathematical description of a process system. These assumptions can be translated into either additional mathematical relationships or constraints between model variables, equations, balance volumes or parameters. In order to analyse the effect of modelling assumptions in a formal, rigorous way, a syntax of modelling assumptions has been defined. The smallest indivisible syntactical element, the so called assumption atom has been identified as a triplet. With this syntax a modelling assumption can be described as an elementary assumption, i.e. an assumption consisting of only an assumption atom or a composite assumption consisting of a conjunction of elementary assumptions. The above syntax of modelling assumptions enables us to represent modelling assumptions as transformations acting on the set of model equations. The notion of syntactical correctness and semantical consistency of sets of modelling assumptions is defined and necessary conditions for checking them are given. These transformations can be used in several ways and their implications can be analysed by formal methods. The modelling assumptions define model hierarchies. That is, a series of model families each belonging to a particular equivalence class. These model equivalence classes can be related to primal assumptions regarding the definition of mass, energy and momentum balance volumes and to secondary and tiertinary assumptions regarding the presence or absence and the form of mechanisms within the system. Within equivalence classes, there are many model members, these being related to algebraic model transformations for the particular model. We show how these model hierarchies are driven by the underlying assumption structure and indicate some implications on system dynamics and complexity issues. (C) 2001 Elsevier Science Ltd. All rights reserved.