33 resultados para post-processing method
Resumo:
Indexing high dimensional datasets has attracted extensive attention from many researchers in the last decade. Since R-tree type of index structures are known as suffering curse of dimensionality problems, Pyramid-tree type of index structures, which are based on the B-tree, have been proposed to break the curse of dimensionality. However, for high dimensional data, the number of pyramids is often insufficient to discriminate data points when the number of dimensions is high. Its effectiveness degrades dramatically with the increase of dimensionality. In this paper, we focus on one particular issue of curse of dimensionality; that is, the surface of a hypercube in a high dimensional space approaches 100% of the total hypercube volume when the number of dimensions approaches infinite. We propose a new indexing method based on the surface of dimensionality. We prove that the Pyramid tree technology is a special case of our method. The results of our experiments demonstrate clear priority of our novel method.
Resumo:
Non-technical losses (NTL) identification and prediction are important tasks for many utilities. Data from customer information system (CIS) can be used for NTL analysis. However, in order to accurately and efficiently perform NTL analysis, the original data from CIS need to be pre-processed before any detailed NTL analysis can be carried out. In this paper, we propose a feature selection based method for CIS data pre-processing in order to extract the most relevant information for further analysis such as clustering and classifications. By removing irrelevant and redundant features, feature selection is an essential step in data mining process in finding optimal subset of features to improve the quality of result by giving faster time processing, higher accuracy and simpler results with fewer features. Detailed feature selection analysis is presented in the paper. Both time-domain and load shape data are compared based on the accuracy, consistency and statistical dependencies between features.