62 resultados para output fluctuations
Resumo:
Form factors are derived for a model describing the coherent Josephson tunneling between two coupled Bose-Einstein condensates. This is achieved by studying the exact solution of the model within the framework of the algebraic Bethe ansatz. In this approach the form factors are expressed through determinant representations which are functions of the roots of the Bethe ansatz equations.
Resumo:
We develop a systematic theory of critical quantum fluctuations in the driven parametric oscillator. Our analytic results agree well with stochastic numerical simulations. We also compare the results obtained in the positive-P representation, as a fully quantum-mechanical calculation, with the truncated Wigner phase-space equation, also known as the semiclassical theory. We show when these results agree and differ in calculations taken beyond the linearized approximation. We find that the optimal broadband noise reduction occurs just above threshold. In this region where there are large quantum fluctuations in the conjugate variance and macroscopic quantum superposition states might be expected, we find that the quantum predictions correspond very closely to the semiclassical theory.
Resumo:
Study Design. A cross-sectional case-control study. Objectives. To examine the effect of fatigue on torque output as well as electromyographic frequency and amplitude values of trunk muscles during isometric axial rotation exertion in back pain patients and to compare the results with a matched control group. Summary of Background Data. Back pain patients exhibited different activation strategies in trunk muscles during the axial rotation exertions. Fatigue changes of abdominal and back muscles during axial rotation exertion have not been examined in patients with back pain. Methods. Twelve back pain patients and 12 matched controls performed isometric fatiguing axial rotation to both sides at 80% maximum voluntary contraction in a standing position. During the fatiguing exertion, electromyographic changes of rectus abdominis, external oblique, internal oblique, latissimus dorsi, iliocostalis lumborum, and multifidus were recorded bilaterally. The primary torque in the transverse plane and the coupling torques in sagittal and coronal planes were also measured. Results. No difference in the endurance capacity was found between back pain and control groups. At the initial period of the exertion, back pain patients demonstrated a statistical trend (P = 0.058) of greater sagittal coupling torque as well as lower activity of rectus abdominis and multifidus and higher activity in external oblique. During the fatigue process similar changes of coupling torque were demonstrated in both sagittal and coronal planes, but a smaller fatigue rate for right external oblique, increase in median frequency for latissimus dorsi, and lesser increase in activity for back muscles were found in the back pain group compared with the control group. Conclusions. Alterations in electromyographic activation and fatigue rates of abdominal and back muscles demonstrated during the fatigue process provide insights into the muscle dysfunctions in back pain and may help clinicians to devise more rational treatment strategies.
Resumo:
Abnormal patterns of trunk muscle activity could affect the biomechanics of spinal movements and result in back pain. The present study aimed to examine electromyographic (EMG) activity of abdominal and back muscles as well as triaxial torque output during isometric axial rotation at different exertion levels in back pain patients and matched controls. Twelve back pain patients and 12 matched controls performed isometric right and left axial rotation at 100%, 70%, 50%, and 30% maximum voluntary contractions in a standing position. Surface EMG activity of rectus abdominis, external oblique, internal oblique, latissimus dorsi, iliocostalis lumborum and multifidus were recorded bilaterally. The primary torque in the transverse plane and the coupling torques in sagittal and coronal planes were measured. Results showed that there was a trend (P = 0.08) of higher flexion coupling torque during left axial rotation exertion in back pain patients. Higher activity for external oblique and lower activity for multifidus was shown during left axial rotation exertion in back pain group when compared to the control group. In right axial rotation, back pain patients exhibited lesser activity of rectus abdominis at higher levels of exertion when compared with matched controls. These findings demonstrated that decreased activation of one muscle may be compensated by overactivity in other muscles. The reduced levels of activity of the multifidus muscle during axial rotation exertion in back pain patients may indicate that spinal stability could be compromised. Future studies should consider these alternations in recruitment patterns in terms of spinal stability and internal loading. The findings also indicate the importance of training for coordination besides the strengthening of trunk muscles during rehabilitation process. (C) 2002 Orthopaedic Research Society. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
Previous studies on tidal water table dynamics in unconfined coastal aquifers have focused on the inland propagation of oceanic tides in the cross-shore direction based on the assumption of a straight coastline. Here, two-dimensional analytical solutions are derived to study the effects of rhythmic coastlines on tidal water table fluctuations. The computational results demonstrate that the alongshore variations of the coastline can affect the water table behavior significantly, especially in areas near the centers of the headland and embayment. With the coastline shape effects ignored, traditional analytical solutions may lead to large errors in predicting coastal water table fluctuations or in estimating the aquifer's properties based on these signals. The conditions under which the coastline shape needs to be considered are derived from the new analytical solution.
Resumo:
The use of thermodilution and other methods of monitoring in dogs during surgery and critical care was evaluated. Six Greyhounds were anaesthetised and then instrumented by placing a thermodilution catheter into the pulmonary artery via the jugular vein. A catheter in the dorsal pedal artery also permitted direct measurement of arterial pressures. Core body temperature (degreesC) and central venous pressure (mmHg) were measured, while cardiac output (mL/min/kg) and mean arterial pressure (mmHg) were calculated. A mid-line surgical incision was performed and the physiological parameters were monitored for a total of two hours. All physiological parameters generally declined, although significant increases (P<0.05) were noted for cardiac output following surgical incision. Central venous pressure was maintained at approximately 0mmHg by controlling an infusion of sterile saline. Core body temperature decreased from 37.1+/-0.6degreesC (once instrumented) to 36.6+/-0.60degreesC (at the end of the study), despite warming using heating pads. Physiological parameters indicative of patient viability will generally decline during surgery without intervention. This study describes an approach that can be undertaken in veterinary hospitals to accurately monitor vital signs in surgical and critical care patients.
Resumo:
Objectives: To examine the changes in torque output resulting from fatigue, as well as changes in electromyographic measures of trunk muscles during isometric axial rotation and to compare these changes between directions of axial rotation. Design: Subjects performed fatiguing right and left isometric axial rotation of the trunk at 80% of maximum voluntary contraction while standing upright. Setting: A rehabilitation center. Participants: Twenty-three men with no history of back pain. Interventions: Not applicable. Main Outcome Measures: Surface electromyographic Signals were recorded from 6 trunk muscles bilaterally. The primary torque in the transverse plane and the coupling torques in sagittal and coronal planes were also measured. Results: During the fatiguing axial rotation contraction, coupling torques of both sagittal and coronal planes were slightly decreased and no difference was found between directions of axial rotation. Decreasing median frequency and an increase in electromyographic amplitude were also found in trunk muscles with different degrees of changes in individual muscles. There were significant differences (P
Resumo:
The Boussinesq equation appears as the zeroth-order term in the shallow water flow expansion of the non-linear equation describing the flow of fluid in an unconfined aquifer. One-dimensional models based on the Boussinesq equation have been used to analyse tide-induced water table fluctuations in coastal aquifers. Previous analytical solutions for a sloping beach are based on the perturbation parameter, epsilon(N) = alphaepsilon cot beta (in which beta is the beach slope, alpha is the amplitude parameter and epsilon is the shallow water parameter) and are limited to tan(-1) (alphaepsilon) much less than beta less than or equal to pi/2. In this paper, a new higher-order solution to the non-linear boundary value problem is derived. The results demonstrate the significant influence of the higher-order components and beach slope on the water table fluctuations. The relative difference between the linear solution and the present solution increases as 6 and a increase, and reaches 7% of the linear solution. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
This paper investigates the input-output characteristics of structural health monitoring systems for composite plates based on permanently attached piezoelectric transmitter and sensor elements. Using dynamic piezoelectricity theory and a multiple integral transform method to describe the propagating and scattered flexural waves an electro-mechanical model for simulating the voltage input-output transfer function for circular piezoelectric transmitters and sensors adhesively attached to an orthotropic composite plate is developed. The method enables the characterization of all three physical processes, i.e. wave generation, wave propagation and wave reception. The influence of transducer, plate and attached electrical circuit characteristics on the voltage output behaviour of the system is examined through numerical calculations, both in frequency and the time domain. The results show that the input-output behaviour of the system is not properly predicted by the transducers' properties alone. Coupling effects between the transducers and the tested structure have to be taken into account, and adding backing materials to the piezoelectric elements can significantly improve the sensitivity of the system. It is shown that in order to achieve maximum sensitivity, particular piezoelectric transmitters and sensors need to be designed according to the structure to be monitored and the specific frequency regime of interest.
Resumo:
An important functional and evolutionary constraint on the physical performance of vertebrates is believed to be the trade-off between speed and endurance capacity. However, despite the pervasiveness of physiological arguments, most studies have found no evidence of the trade-off when tested at the whole-animal level. We investigated the existence of this trade-off at the whole-muscle level, the presumed site of this physiological conflict, by examining inter-individual variation in both maximum power output and fatigue resistance for mouse extensor digitorum longus (EDL) muscle using the work-loop technique. We found negative correlations between several measures of in vitro maximum power output and force production with fatigue resistance for individual mouse EDL muscles, indicating functional trade-offs between these performance parameters. We suggest that this trade-off detected at the whole-muscle level has imposed an important constraint on the evolution of vertebrate physical performance.
Resumo:
The power output achieved at peak oxygen consumption (VO2 peak) and the time this power can be maintained (i.e., Tmax) have been used in prescribing high-intensity interval training. In this context, the present study examined temporal aspects of the VO2 response to exercise at the cycling power that output well trained cyclists achieve their VO2 peak (i.e., Pmax). Following a progressive exercise test to determine VO2 peak, 43 well trained male cyclists (M age = 25 years, SD = 6; M mass = 75 kg SD = 7; M VO2 peak = 64.8 ml(.)kg(1.)min(-1), SD = 5.2) performed two Tmax tests 1 week apart.1. Values expressed for each participant are means and standard deviations of these two tests. Participants achieved a mean VO2 peak during the Tmax test after 176 s (SD = 40; = 74% of Tmax, SD = 12) and maintained it for 66 s (SD = 39; M = 26% of Tmax, SD = 12). Additionally they obtained mean 95 % of VO2 peak after 147 s (SD = 31; M = 62 % of Tmax, SD = 8) and maintained it for 95 s (SD = 38; M = 38 % of Tmax, SD = 8). These results suggest that 60-70% of Tmax is an appropriate exercise duration for a population of well trained cyclists to attain VO2 peak during exercise at Pmax. However due to intraparticipant variability in the temporal aspects of the VO2 response to exercise at Pmax, future research is needed to examine whether individual high-intensity interval training programs for well trained endurance athletes might best be prescribed according to an athlete's individual VO2 response to exercise at Pmax.
Resumo:
To examine the role of the effector dynamics of the wrist in the production of rhythmic motor activity, we estimated the phase shifts between the EMG and the task-related output for a rhythmic isometric torque production task and an oscillatory movement, and found a substantial difference (45-52degrees) between the two. For both tasks, the relation between EMG and task-related output (torque or displacement) was adequately reproduced with a physiologically motivated musculoskeletal model. The model simulations demonstrated the importance of the contribution of passive structures to the overall dynamics and provided an account for the observed phase shifts in the dynamic task. Additional simulations of the musculoskeletal model with added load suggested that particular changes in the phase relation between EMG and movement may follow largely from the intrinsic muscle dynamics, rather than being the result of adaptations in the neural control of joint stiffness. The implications of these results are discussed in relation to (models of) interlimb coordination in rhythmic tasks. (C) 2004 Elsevier B.V. All rights reserved.