52 resultados para multipotent stem cell


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Animal models of autoimmune disease and case reports of patients with these diseases who have been involved in bone marrow transplants have provided important data implicating the haemopoietic stem cell in rheumatic disease pathogenesis. Animal and human examples exist for both cure and transfer of rheumatoid arthritis, systemic lupus erythematosus (SLE) and other organ-specific diseases using allogeneic haemopoietic stem cell transplantation. This would suggest that the stem cell in these diseases is abnormal and could be cured by replacement of a normal stem cell although more in vitro data are required in this area. Given the morbidity and increased mortality in some patients with severe autoimmune diseases and the increasing safety of autologous haemopoietic stem cell transplantation (HSCT), pilot studies have been conducted using HSCT in rheumatic diseases. It is still unclear whether an autologous graft will cure these diseases but significant remissions have been obtained which have provided important data for the design of randomized trials of HSCT versus more conventional therapy. Several trials are now open to accrual under the auspices of the European Bone Marrow Transplant Group/European League Against Rheumatism (EBMT/EULAR) registry. Future clinical and laboratory research will need to document the abnormalities of the stem cell of a rheumatic patient because new therapies based on gene therapy or stem cell differentiation could be apllied to these diseases. With increasing safety of allogeneic HSCT it is not unreasonable to predict cure of some rheumatic diseases in the near future.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Prospective studies have shown rapid engraftment using granulocyte-colony-stimulating factor-mobilized peripheral blood stem cells (G-PBSCs) for allogeneic transplantation, though the risks for graft-versus-host disease (GVHD) may be increased. It was hypothesized that the use of G-CSF to prime bone marrow (GBM) would allow rapid engraftment without increased risk for GVHD compared with G-PBSC. Patients were randomized to receive G-BM or G-PBSCs for allogeneic stem cell transplantation. The study was designed (beta < .8) to detect a difference in the incidence of chronic GVHD of 33% ( < .05). The plan was to recruit 100 patients and to conduct an interim analysis when the 6-month follow-up point was reached for the first 50 patients. Fifty-seven consecutive patients were recruited (G-BM, n = 28; G-PBSC, n = 29). Patients in the G-PBSC group received 3-fold more CD34(+) and 9-fold more CD3(+) cells. Median times to neutrophil (G-BM, 16 days; G-PBSC, 14 days; P < .1) and platelet engraftment (G-BM, 14 days; G-PBSC, 12 days; P < .1) were similar. The use of G-PBSC was associated with steroid refractory acute GVHD (G-BM, 0%; G-PBSC, 32%; P < .001), chronic GVHD (G-BM, 22%; G-PBSC, 80%; P < .02), and prolonged requirement for immunosuppressive therapy (G-BM, 173 days; G-PBSC, 680 days; P < .009). Survival was similar for the 2 groups. Compared with G-PBSC the use of G-BM resulted in comparable engraftment, reduced severity of acute GVHD, and less subsequent chronic GVHD. (Blood. 2001;98:3186-3191) (C) 2001 by The American Society of Hematology.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

HLA-B*4402 and B*4403 are naturally occurring MHC class I alleles that are both found at a hi,,h frequency in all human populations, and vet they only differ by one residue on the alpha2 helix (B*4402 Aspl56-->B*4403 Leu156) CTLs discriminate between HLA-B*4402 and B*4403, and these allotypes stimulate strong mutual allogeneic responses reflecting their known barrier to hemopoeitic stem cell transplantation. Although HLA-B*4402 and B*4403 share >95% of their peptide repertoire, B*4403 presents more unique peptides than B*4402, consistent with the stronger T cell alloreactivity observed toward B*4403 compared with B*4402. Crystal structures of B*4402 and B*4403 show how the polymorphisin at position 156 is completely buried and yet alters both the peptide and the heavy chain conformation, relaxing ligand selection by B*4403 compared with B*4402. Thus, the polymorphism between HLA-B*4402 and B 4403 modifies both peptide repertoire and T cell recognition, and is reflected lit the paradoxically powerful alloreactivity that occurs across this minimal mismatch. The findings suggest that these closely related class I genes are maintained lit diverse human populations through their differential impact on the selection of peptide ligands and the T cell repertoire.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

For most of the past century, the prospect of replacing lost or damaged cells in the central nervous system (CNS) was hampered by the opinion that the adult mammalian CNS was incapable of generating new nerve cells. This belief, Like most dogmas, was essentially founded on a lack of experimental evidence to the contrary. The overturning of this 'no new neuron' hypothesis began midway through the twentieth century with a series of reports documenting neurogenesis in the postnatal and adult brain(1), continued with the isolation and in vitro culture of neurogenic cells from the adult mammalian brain(2,3), and culminated in the discovery of a population of muttipotent, selfrenewing cells in the adult CNS (that is, bona fide neural stem cells)(3-5). Although a variety of techniques were initially used, the neurosphere assay (NSA)(3,6) rapidly emerged as the assay of choice and has since become a valuable toot for isolating, and understanding the biology of, embryonic and adult CNS stem cells. Like all technologies, it is not without its limitations. In this article we will hightight several shortcomings of the assay related to its application and interpretation that we believe have led to a significant body of research whose conclusions may well be misleading.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Gene expression studies from hematopoietic stem cell (HSC) populations purified to variable degrees have defined a set of sternness genes. Unexpectedly, results also hinted toward a HSC chromatin poised in a wide-open state. With the aim of providing a robust tool for further studies into the molecular biology of HSCs, the studies herein describe the construction and comparative molecular analysis of A-phage cDNA libraries from highly purified HSCs that retained their long-term repopulating activities (long-term HSCs [LT-HSCs]) and from short-term repopulating HSCs that were largely depleted of these activities. Microarray analysis of the libraries confirmed the previous results but also revealed an unforeseen preferential expression of translation- and metabolism-associated genes in the LT-HSCs. Therefore, these data indicate that HSCs are quiescent only in regard of proliferative activities but are in a state of readiness to provide the metabolic and translational activities required after induction of proliferation and exit from the HSC pool.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The ability to identify and manipulate stem cells has been a significant advancement in regenerative medicine and has contributed to the development of tissue engineering-based clinical therapies. Difficulties associated with achieving predictable periodontal regeneration, means that novel techniques such as tissue engineering need to be developed in order to regenerate the extensive soft and hard tissue destruction that results from periodontitis. One of the critical requirements for a tissue engineering approach is the delivery of ex vivo expanded progenitor populations or the mobilization of endogenous progenitor cells capable of proliferating and differentiating into the required tissues. By definition, stem cells fulfill these requirements and the recent identification of stem cells within the periodontal ligament represents a significant development in the progress toward predictable periodontal regeneration. In order to explore the importance of stem cells in periodontal wound healing and regeneration, this review will examine contemporary concepts in stem cell biology, the role of periodontal ligament progenitor cells in the regenerative process, recent developments in identifying periodontal stem cells and the clinical implications of these findings.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The number of cells generated by a proliferating stem or precursor cell can be influenced both by proliferation and by the degree of cell death/survival of the progeny generated. In this study, the extent to which cell survival controls progenitor number was examined by comparing the growth characteristics of neurosphere cultures derived from mice lacking genes for the death inducing Bcl-2 homologue Hara Kiri (Hrk), apoptosis-associated protein 1 (Apaf1), or the prosurvival nuclear factor-kappa B (NF kappa B) subunits p65, p50, or c-rel. We found no evidence that Hrk or Apaf1, and by inference the mitochondrial cell death pathway, are involved in regulating the number of neurosphere-derived progeny. However, we identified the p65p50 NF kappa B dimer as being required for the normal growth and expansion of neurosphere cultures. Genetic loss of both p65 and p50 NF kappa B subunits resulted in a reduced number of progeny but an increased proportion of neurons. No effect on cell survival was observed. This suggests that the number and fate of neural progenitor cells are more strongly regulated by cell cycle control than survival. (c) 2005 Wiley-Liss, Inc.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The adult mammalian brain maintains populations of neural stem cells within discrete proliferative zones. Understanding of the molecular mechanisms regulating adult neural stem cell function is limited. Here, we show that MYST family histone acetyltransferase Querkopf (Qkf, Myst4, Morf)-deficient mice have cumulative defects in adult neurogenesis in vivo, resulting in declining numbers of olfactory bulb interneurons, a population of neurons produced in large numbers during adulthood. Qkf-deficient mice have fewer neural stem cells and fewer migrating neuroblasts in the rostral migratory stream. Qkf gene expression is strong in the neurogenic subventricular zone. A population enriched in multipotent cells can be isolated from this region on the basis of Qkf gene expression. Neural stem cells/progenitor cells isolated from Qkf mutant mice exhibited a reduced self-renewal capacity and a reduced ability to produce differentiated neurons. Together, our data show that Qkf is essential for normal adult neurogenesis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Smooth muscle cultures can calcify under certain circumstances. As a model system these cultures therefore provide information on why calcification occurs in atherosclerotic plaques. Whether all smooth muscle cells (under certain conditions), or only specific populations, can produce this mineralization has not been resolved. Demer's group has cloned calcifying vascular cells from subcultured bovine aorta and studied them in detail. They have speculated on whether the cells are smooth muscle which have altered in phenotype, or whether they are derived from a stem cell population within the artery wall. The article argues that while the normal process of smooth muscle phenotypic modulation seen in arterial repair could account for the observations, this view may be two simplistic considering the complex nature of the artery wall. Certainly there is evidence for heterogeneity of smooth muscle cells in the artery wall and recent evidence suggests that stem cells can circulate in the blood and repopulate tissues. Further studies are required to resolve the important question as to the origin of cells which produce mineralization in atheroma.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aberrant dendritic cell (DC) development and function may contribute to autoimmune disease susceptibility. To address this hypothesis at the level of myeloid lineage-derived DC we compared the development of DC from bone marrow progenitors in vitro and DC populations in vivo in autoimmune diabetes-prone nonbese diabetic (NOD) mice, recombinant congenic nonbese diabetes-resistant (NOR) mice, and unrelated BALB/c and C57BL/6 (BL/6) mice. In GM-CSF/IL-4-supplemented bone marrow cultures, DC developed in significantly greater numbers from NOD than from NOR, BALB/c, and BL/6 mice. Likewise, DC developed in greater numbers from sorted (lineage(-)IL-7Ralpha(-)SCA-1(-)c-kit(+)) NOD myeloid progenitors in either GM-CSF/IL-4 or GM-CSF/stem cell factor (SCF)/TNF-alpha. [H-3]TdR incorporation indicated that the increased generation of NOD DC was due to higher levels of myeloid progenitor proliferation. Generation of DC with the early-acting hematopoietic growth factor, flt3 ligand, revealed that while the increased DC-generative capacity of myeloid-committed progenitors was restricted to NOD cells, early lineage-uncommitted progenitors from both NOD and NOR had increased DC-gencrative capacity relative to BALB/c and BL/6. Consistent with these findings, NOD and NOR mice had increased numbers of DC in blood and thymus and NOD had an increased proportion of the putative myeloid DC (CD11c(+)CD11b(+)) subset within spleen. These findings demonstrate that diabetes-prone NOD mice exhibit a myeloid lineage-specific increase in DC generative capacity relative to diabetes-resistant recombinant congenic NOR mice. We propose that an imbalance favoring development of DC from myeloid-committed progenitors predisposes to autoimmune disease in NOD mice.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Several reports have suggested an interaction between the erythropoietin receptor (EpoR) and the shared signaling subunit (hbeta(c)) of the human granulocyte macrophage-colony stimulating factor (GM-CSF), interleukin (IL)-3, and IL-5 receptors, although the functional consequences of this interaction are unclear. We previously showed that in vivo expression of constitutively active extracellular (EC) mutants of hbeta(c) induces erythrocytosis and Epo independence of erythroid colony-forming units (CFU-E). This occurs despite an apparent requirement of these mutants for the GM-CSF receptor alpha-subunit (GMRalpha), which is not expressed in CFU-E. Here, we show that coexpression of hbeta(c) EC mutants and EpoR in BaF-B03 cells, which lack GMRalpha, results in factor-independent proliferation and JAK2 activation. Mutant receptors that cannot activate JAK2 fail to produce a functional interaction. As there is no detectable phosphorylation of hbeta(c). on intracellular tyrosine residues, EpoR displays constitutive tyrosine phosphorylation. These observations suggest that JAK2 activation mediates cross-talk between EC mutants of hbeta(c) and EpoR. The implications of these data are discussed as are our findings that activated hbeta(c) mutants can functionally interact with certain other cytokine receptors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The initiation of graft vs. host disease (GVHD) after stem cell transplantation is dependent on direct antigen presentation by host antigen presenting cells (APC) while the effect of indirect antigen presentation by donor APC is unknown. We have studied the role of indirect antigen presentation in allogenic responses by adding populations of cytokine-expanded donor APC to haematopoietic grafts that would otherwise induce lethal GVHD. Progenipoietin-1 (a synthetic G-CSF/Flt-3 L molecule) and G-CSF expanded myeloid DC, plasmacytoid DC and a novel granulocyte-monocyte precursor population (GM) that differentiate into class IIpos, CD80/CD86pos, CD40neg APC during GVHD. Whereas addition of plasmacytoid and myeloid donor DC augmented GVHD, GM cells induced transplant tolerance via MHC class II restricted generation of IL-10-secreting regulatory T cells. Thus a population of cytokine expanded granulocyte-monocyte precursors function as regulatory antigen presenting cells, suggesting that G-CSF derivatives may have application in disorders characterised by a loss of self-tolerance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The cDNAs encoding wild type (WT) human receptor tyrosine kinase c-Kit and a constitutively activated mutant, V816Kit, were introduced into granulocyte-macrophage colony-stimulating factor (GM-CSF)-dependent early murine hemopoietic cells, which had been transformed with activated Myb, WTKit cells were able to grow in the presence of the human ligand for Kit, stem cell factor (SCF), but displayed reduced growth and clonogenic potential in either SCF or GM-CSF compared with the parental cells in GM-CSF. In contrast, V816Kit cells grew without factor at a higher rate than the parental cells in GM-CSF and displayed increased clonogenicity. Dissection of the growth characteristics in liquid culture showed that in the presence of appropriate factors, the different populations had similar proliferation rates, but that V816Kit profoundly increased cell survival compared with WTKit or parental cells, This suggests that the signals transduced by WTKit activated with SCF, and by V816Kit, were not identical. Also, WTKit and V816Kit-expressing cells both varied from the early myeloid progenitor phenotype of the parental cells and gave rise to a small number of large to giant adherent cells that expressed macrophage (alpha-naphthyl acetate) esterase and neutrophil (naphtol-AS-D-chloroacetate) esterase, were highly phagocytic and phenotypically resembled histiocytes. Thus, WTKit activated by SCF and V816Kit were able to induce differentiation in a proportion of Myb-transformed myeloid cells. The factor independent V816Kit cells, unlike the parental and WTKit expressing cells, were shown to produce tumors of highly mitotic, invasive cells at various stages of differentiation in syngeneic mice. These results imply that constitutively activated Kit can promote the development of differentiated myeloid tumors and that its oncogenic effects are not restricted to lineages (mast cell and B-cell acute lymphoblastic leukemia), which have been reported previously. Furthermore, the mixed populations of cells in culture and in the tumors phenotypically resembled the leukemic cells from patients with monocytic leukemia with histiocytic differentiation (acute myeloid leukemia-M5c), a newly proposed subtype of myeloid leukemia. (C) 1997 by The American Society of Hematology.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report our experience with the combination of anti-thymocyte globulin (ATGAM) and tacrolimus in the treatment of 20 patients with steroid refractory and dependent acute graft-versus-host disease (GVHD) transplanted between August 1996 and February 2000. All patients received cyclosporine-based GVHD prophylaxis. Thirteen patients developed a maximum of grade TV, five grade III and two grade II acute GVHD, with 15 patients being refractory to steroids and five dependent on steroids. Patients were treated with ATGAM (15 mg/kg for 5 d) and tacrolimus (0.025-0.1 mg/kg/d) in addition to continuation of their high-dose steroids and cessation of their cyclosporine. Within 28 d of treatment, we observed eight complete responses (CR), six partial responses (PR) and six with no response. Overall response (CR + PR) was predicted by GVHD severity. Infectious complications occurred in 80% of patients. The median survival was 86.5 d (range, 21-1081 d) with 35% of patients remaining alive, Survival following combination therapy was significantly more likely in men (P < 0.001), skin-only GVHD (P = 0.027), less severe GVHD (P = 0.048), and in responders to tacrolimus and ATGAM (P< 0.001). In conclusion, concurrent introduction of ATGAM and tacrolimus is a promising therapeutic combination for GVHD refractory to steroids and cyclosporine.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The contribution of the UV component of sunlight to the development of skin cancer is widely acknowledged, although the molecular mechanisms that are disrupted by UV radiation (UVR) resulting in the loss of normal growth controls of the epidermal stem cell keratinocytes and melanocytes is still poorly understood. alpha-Melanocyte stimulating hormone (alpha-MSH), acting via its receptor MC1, has a key role in skin pigmentation and the melanizing response after exposure to UVR. The cell cycle inhibitor p16/CDKN2A also appears to have an important function in a cell cycle checkpoint response in skin after exposure to UVR. Both of these genes have been identified as risk factors in skin cancer, MC1R variants are associated with increased risk to both melanoma and nonmelanoma skin cancers, and p16/CDKN2A with increased risk of melanoma. Here we demonstrate that the increased expression of p16 after exposure to sub-erythemal doses of UVR is potentiated by alpha-MSH, a ligand for MC1R, and this effect is mimicked by cAMP, the intracellular mediator of alpha-MSH signaling via the MC1 receptor. This link between p16 and MC1R may provide a molecular basis for the increased skin cancer risk associated with MC1R polymorphisms.