39 resultados para mineral phosphorus
Resumo:
The personal computer revolution has resulted in the widespread availability of low-cost image analysis hardware. At the same time, new graphic file formats have made it possible to handle and display images at resolutions beyond the capability of the human eye. Consequently, there has been a significant research effort in recent years aimed at making use of these hardware and software technologies for flotation plant monitoring. Computer-based vision technology is now moving out of the research laboratory and into the plant to become a useful means of monitoring and controlling flotation performance at the cell level. This paper discusses the metallurgical parameters that influence surface froth appearance and examines the progress that has been made in image analysis of flotation froths. The texture spectrum and pixel tracing techniques developed at the Julius Kruttschnitt Mineral Research Centre are described in detail. The commercial implementation, JKFrothCam, is one of a number of froth image analysis systems now reaching maturity. In plants where it is installed, JKFrothCam has shown a number of performance benefits. Flotation runs more consistently, meeting product specifications while maintaining high recoveries. The system has also shown secondary benefits in that reagent costs have been significantly reduced as a result of improved flotation control. (C) 2002 Elsevier Science B.V. All rights reserved.
Mineral chemistry, whole-rock compositions, and petrogenesis of leg 176 gabbros: Data and discussion
Resumo:
We report mineral chemistry, whole-rock major element compositions, and trace element analyses on Hole 735B samples drilled and selected during Leg 176. We discuss these data, together with Leg 176 shipboard data and Leg 118 sample data from the literature, in terms of primary igneous petrogenesis. Despite mineral compositional variation in a given sample, major constituent minerals in Hole 735B gabbroic rocks display good chemical equilibrium as shown by significant correlations among Mg# (= Mg/[Mg+Fe2+]) of olivine, clinopyroxene, and orthopyroxene and An (=Ca/[Ca+Na]) of plagioclase. This indicates that the mineral assemblages olivine + plagioclase in troctolite, plagioclase + clinopyroxene in gabbro, plagioclases + clinopyroxene + olivine in olivine gabbro, and plagioclase + clinopyroxene + olivine + orthopyroxene in gabbronorite, and so on, have all coprecipitated from their respective parental melts. Fe-Ti oxides (ilmenite and titanomagnetite), which are ubiquitous in most of these rocks, are not in chemical equilibrium with olivine, clinopyroxene, and plagioclase, but precipitated later at lower temperatures. Disseminated oxides in some samples may have precipitated from trapped Fe-Ti–rich melts. Oxides that concentrate along shear bands/zones may mark zones of melt coalescence/transport expelled from the cumulate sequence as a result of compaction or filter pressing. Bulk Hole 735B is of cumulate composition. The most primitive olivine, with Fo = 0.842, in Hole 735B suggests that the most primitive melt parental to Hole 735B lithologies must have Mg# ≤ 0.637, which is significantly less than Mg# = 0.714 of bulk Hole 735B.
Resumo:
A long-term experiment was conducted to compare the effects of flowing and still water on growth, and the relationship between water flow and nutrients, in Aponogeton elongatus, a submerged aquatic macrophyte. A. elongatus plants were grown for 23 weeks with three levels of nutrition (0, 0.5 and 1g Osmocote Plus(R) fertiliser pot(-1)) in aquaria containing stirred or unstirred water. Fertilized plants grew much better than non-fertilized. The highest fertilizer level produced 29% wider leaves and 58% higher total dry weight in stirred water. Stirred water increased leaf area by 40% and tuber size by 81%, but only with the highest level of nutrition. These results suggest that this plant depends on its roots for mineral uptake, rather than from the open water, and the major limitation to growth in still water is the supply of dissolved inorganic carbon. It was the combined effects of nutrient availability and stirring that produced the strongest response in plant growth, morphology and composition. This study provides some explanation for the observations of others that these plants grow best in creeks or river systems with permanently flowing water.
Resumo:
Blast fragmentation can have a significant impact on the profitability of a mine. An optimum run of mine (ROM) size distribution is required to maximise the performance of downstream processes. If this fragmentation size distribution can be modelled and controlled, the operation will have made a significant advancement towards improving its performance. Blast fragmentation modelling is an important step in Mine to Mill™ optimisation. It allows the estimation of blast fragmentation distributions for a number of different rock mass, blast geometry, and explosive parameters. These distributions can then be modelled in downstream mining and milling processes to determine the optimum blast design. When a blast hole is detonated rock breakage occurs in two different stress regions - compressive and tensile. In the-first region, compressive stress waves form a 'crushed zone' directly adjacent to the blast hole. The second region, termed the 'cracked zone', occurs outside the crush one. The widely used Kuz-Ram model does not recognise these two blast regions. In the Kuz-Ram model the mean fragment size from the blast is approximated and is then used to estimate the remaining size distribution. Experience has shown that this model predicts the coarse end reasonably accurately, but it can significantly underestimate the amount of fines generated. As part of the Australian Mineral Industries Research Association (AMIRA) P483A Mine to Mill™ project, the Two-Component Model (TCM) and Crush Zone Model (CZM), developed by the Julius Kruttschnitt Mineral Research Centre (JKMRC), were compared and evaluated to measured ROM fragmentation distributions. An important criteria for this comparison was the variation of model results from measured ROM in the-fine to intermediate section (1-100 mm) of the fragmentation curve. This region of the distribution is important for Mine to Mill™ optimisation. The comparison of modelled and Split ROM fragmentation distributions has been conducted in harder ores (UCS greater than 80 MPa). Further work involves modelling softer ores. The comparisons will be continued with future site surveys to increase confidence in the comparison of the CZM and TCM to Split results. Stochastic fragmentation modelling will then be conducted to take into account variation of input parameters. A window of possible fragmentation distributions can be compared to those obtained by Split . Following this work, an improved fragmentation model will be developed in response to these findings.
Resumo:
Background: Although early in life there is little discernible difference in bone mass between boys and girls, at puberty sex differences are observed. It is uncertain if these differences represent differences in bone mass or just differences in anthropometric dimensions. Aim: The study aimed to identify whether sex independently affects bone mineral content (BMC) accrual in growing boys and girls. Three sites are investigated: total body (TB), femoral neck (FN) and lumbar spine (LS). Subjects and methods: 85 boys and 67 girls were assessed annually for seven consecutive years. BMC was assessed by dual energy X-ray absorptiometry (DXA). Biological age was defined as years from age at peak height velocity (PHV). Data were analysed using a hierarchical (random effects) modelling approach. Results: When biological age, body size and body composition were controlled, boys had statistically significantly higher TB and FN BMC at all maturity levels (p < 0.05). No independent sex differences were found at the LS (p > 0.05). Conclusion: Although a statistical significant sex effect is observed, it is less than the error of the measurement, and thus sex difference are debatable. In general, sex difference are explained by anthropometric difference
Resumo:
The epidemic that is osteoporosis has led to an increasing interest in bone mineral, and the factors that influence the levels of bone mineral, in recent years. While it is unrealistic to try and turn back the clock, a return to an increased level of physical activity may be an important consideration in terms of skeletal health. Peak bone mass is largely determined by heredity, but lifestyle and dietary patterns also influence the level of bone mineral accrued during the growing years. In this review, we summarize the evidence that vigorous weight-bearing physical activity and adequate calcium intake represent the best possibility for enhancing the attainment of an optimal level of bone mineral, within genetic limits.
Resumo:
Simultaneous nitrification and denitrification (SND) via the nitrite pathway and anaerobic-anoxic-enhanced biological phosphorus removal (EBPR) are two processes that can significantly reduce the energy and COD demand for nitrogen and phosphorus removal. The combination of these two processes has the potential of achieving simultaneous nitrogen and phosphorus removal with a minimal requirement for COD. A lab-scale sequencing batch reactor (SBR) was operated in alternating anaerobic-aerobic mode with a low dissolved oxygen (DO) concentration (0.5 mg/L) during the aerobic period, and was demonstrated to accomplish nitrification, denitrification, and phosphorus removal. Under anaerobic conditions, COD was taken up and converted to poly-hydroxyalkanoates (PHAs), accompanied by phosphorus release. In the subsequent aerobic stage, PHA was oxidized and phosphorus was taken up to
Resumo:
Adolescents and adults with CF have lower bone mineral density (BMD) than normal, but its relationship with phenotype is not well understood. Point FEV1% predicted (FEV) and rate of change of FEV are biased estimates of disease severity, because progressively older subjects represent a selected survivor population, with females at greater risk of death than males. To investigate the relationship between BMD and phenotype we used an index (predicted age at death) derived from Bayesian estimates of slope and intercept of FEV, age at last measurement and survival status. Predictive equations for the index were derived from 97 subjects (78 survivors) from the RCH CF clinic, and applied to a group of 102 comparable subjects who had BMD measured, classified as having‘mild’ ()75th), ‘moderate’ (25– 75th), or ‘severe’ (-25th centile) phenotype. Total body (TB) and lumbar spine (LS) BMD z-scores (Z) were compared, adjustingfor gender effects, using 2-way ANOVA. Annual mean change in FEV segregated, as expected, according to phenotype, ‘severe’ (ns25), ‘moderate’ (ns51) and ‘mild’ (ns25) y3.01(y3.73 to y2.30)%, y0.85(y1.36 to y0.35)%, 2.70(1.92 to 3.46)%, respectively, with no gender difference. LS and TB BMDZ were different in each phenotype (P-s 0.002), LS BMDZ for ‘severe’, ‘moderate’ and ‘mild’ y1.63(CI: y2.07 to y 1.19), y0.86(CI: y1.17 to y0.55), y0.06(CI: y0.54 to 0.41). Males had lower LS BMDZ than females overall (y1.22 (CI: y1.54 to y0.91) vs. y0.48(CI: y 0.84 to y0.12) Ps0.002). In the ‘severe’ group, males had lower TB BMDZ and LS BMDZ (PF0.002). Low BMD is associated with ‘moderate’ and ‘severe’ phenotypes, with relative preservation in females in the ‘severe’ group. Female biology (reproductive fitness) might promote resistance to bone resorption at a critical level of BMD loss.