187 resultados para microsatellite-enriched library
Resumo:
The fate of N-15-nitrogen-enriched formulated feed fed to shrimp was traced through the food web in shallow, outdoor tank systems (1000 1) stocked with shrimp. Triplicate tanks containing shrimp water with and without sediment were used to identify the role of the natural biota in the water column and sediment in processing dietary nitrogen (N). A preliminary experiment demonstrated that N-15-nitrogen-enriched feed products could be detected in the food web. Based on this, a 15-day experiment was conducted. The ammonium (NH4+) pool in the water column became rapidly enriched (within one day) with N-15-nitrogen after shrimp were fed N-15-enriched feed. By day 15, 6% of the added N-15-nitrogen was in this fraction in the 'sediment' tanks compared with 0.4% in the 'no sediment' tanks. The particulate fraction in the water column, principally autotrophic nanoflagellates, accounted for 4-5% of the N-15-nitrogen fed to shrimp after one day. This increased to 16% in the 'no sediment' treatment, and decreased to 2% in the 'sediment' treatment by day 15. It appears that dietary N was more accessible to the phytoplankton community in the absence of sediment. The difference is possibly because a proportion of the dietary N was buried in the sediment in the 'sediment' treatment, making it unavailable to the phytoplankton. Alternatively, the dietary N was retained in the NH4+ pool in the water column since phytoplankton growth, and hence, N utilization was lower in the 'sediment' treatment. The lower growth of phytoplankton in the 'sediment' treatment appeared to be related to higher turbidity, and hence, lower light availability for growth. The percentage N-15-nitrogen detected in the sediment was only 6% despite the high capacity for sedimentation of the large biomass of plankton detritus and shrimp waste. This suggests rapid remineralization of organic waste by the microbial community in the sediment resulting in diffusion of inorganic N sources into the water column. It is likely that most of the dietary N will ultimately be removed from the tank system by water discharges. Our study showed that N-15-nitrogen derived from aquaculture feed can be processed by the microbial community in outdoor aquaculture systems and provides a method for determining the effect of dietary N on ecosystems. However, a significant amount of the dietary N was not retained by the natural biota and is likely to be present in the soluble organic fraction. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Microsatellites were isolated and characterized from Anopheles flavirostris, the principal malaria vector in the Philippines. Fifty of the 150 positive clones sequenced contained mostly dinucleotide microsatellites and only 16 had trinucleotide repeats. We designed primers from the unique sequences flanking 18 microsatellite loci. Of these, 11 loci produced successful amplification and revealed high levels of polymorphism; 86 alleles were detected with allele number ranging from 2 to 16 at each locus. The high allelic variability will make these microsatellite loci very useful for taxonomic and population genetic studies.
Resumo:
Ten microsatellite loci are described in Araucaria cunninghamii, the first reported in the Araucariaceae. Eight were tested in sections Eutacta and Bunya, which diverged more than 200 MYA, and to the sister genus Agathis. Specific amplification products within the expected size range were obtained for six to eight loci in section Eutacta (depending on species), five loci in section Bunya and three. loci in Agathis. Two of the loci (CRCAc1 and CRCAc2, both GA repeats) produced specific amplification products in all taxa, with orthology confirmed by sequence analysis. The repeats were perfect in all taxa. The flanking sequences were extremely conserved, with sequence divergence of 0% to 2.0% within Araucaria species and 2.9% to 7.5% between Araucaria and Agathis. These microsatellites represent some of the most conserved microsatellite loci reported in plants. This may be due to a low evolutionary rate in Araucariaceae genome or the loci may be closely associated with highly conserved, unreported genes.
Resumo:
Bemisia tabaci (Hemiptera: Aleyrodidae) is a haplo-diploid species with a global distribution demonstrating strong geographical structure with eight recognizable genetic groups. Fifteen microsatellite loci (335 alleles, 6-44 alleles per locus) were derived from four of the eight groups and were then screened across 33 populations. These loci clearly differentiate the populations. The microsatellites amplified best in individuals from genetic groups representing the Mediterranean, Middle East, Asia (three groups) and Australasia/Oceania and amplified less well with populations from sub-Saharan Africa and the New World. This differential amplification pattern is a direct result of the relatedness to the microsatellite source material.
Resumo:
The availability of variable genetic markers for groupers (Serranidae) has generally been limited to mitochondrial DNA. For studies of population genetic structure, more loci are usually required; particularly useful are those that are nuclear in origin such as microsatellites. Here, we isolated and characterized 9 microsatellite loci from the endemic Hawaiian grouper Epinephelus quernus using a biotin-labeled oligonucleotide-streptavidin-coated magnetic bead approach. Of the 20 repeat-containing fragments isolated, 15 had sufficient flanking region in which to design primers. Among these, 9 produced consistent polymerase chain reaction product, and 6 were highly variable. These 6 loci were all composed of dinucleotide repeats, with the number of alleles ranging from 6 to 18, and heterozygosities from 33.3% to 91.7%. The high levels of variability observed should make these markers useful for population genetic studies of E. quernus, and potentially other epinephelines.
Resumo:
Expression of membrane-bound Fas ligand (FasL) by colorectal cancer cells may allow the development of an immune-privileged site by eliminating incoming tumour-infiltrating lymphocytes (TILs) in a Fas-mediated counter-attack. Sporadic colorectal cancer can be subdivided into three groups based on the level of DNA microsatellite instability (NISI). High-level NISI (NISI-High) is characterized by the presence of TILs and a favourable prognosis, while microsatellite-stable (MSS) cancers are TIL-deficient and low-level MSI (MSI-Low) is associated with an intermediate TIL density. The purpose of this study was to establish the relationship between MSI status and FasL expression in primary colorectal adenocarcinoma. Using immunohistochemistry and a selected series of 101 cancers previously classified as 31 MSI-High, 30 NISI-Low, and 40 MISS, the present study sought to confirm the hypothesis that increased TIL density in MSI-High cancers is associated with low or absent membrane-bound FasL expression, while increased FasL in MSS cancers allows the killing of host TILs. TUNEL/CD3 double staining was also used to determine whether MSS cancers contain higher numbers of apoptotic TILs in vivo than MSI-High or MSI-Low cancers. Contrary to the initial hypothesis, it was found that MSI-High cancers were associated with higher FasL expression (p = 0.04) and a stronger intensity of FasL staining (p = 0.007). In addition, mucinous carcinomas were independently characterized by increased FasL expression (p = 0.03) and staining intensity (p = 0.0005). Higher FasL expression and staining intensity did not correlate with reduced TIL density or increased numbers of apoptotic TILs. However, consistent with the hypothesis that curtailment of the host anti-tumour immune response contributes to the poor prognosis in MSS cancers, it was found that apoptotic TILs were most abundant in MSS carcinomas and metastatic Dukes' stage C or D tumours (p = 0.004; p = 0.046 respectively). This study therefore suggests that MSS colorectal cancers are killing incoming TILs in an effective tumour counter-attack, but apparently not via membrane-bound FasL. Copyright (C) 2003 John Wiley Sons, Ltd.
Resumo:
Insulin stimulates glucose transport in fat and muscle cells by triggering exocytosis of the glucose transporter GLUT4. To define the intracellular trafficking of GLUT4, we have studied the internalization of an epitope-tagged version of GLUT4 from the cell surface. GLUT4 rapidly traversed the endosomal system en route to a perinuclear location. This perinuclear GLUT4 compartment did not colocalize with endosomal markers (endosomal antigen I protein, transferrin) or TGN38, but showed significant overlap with the TGN target (t)-soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) Syntaxins 6 and 16. These results were confirmed by vesicle immunoisolation. Consistent with a role for Syntaxins 6 and 16 in GLUT4 trafficking we found that their expression was up-regulated significantly during adipocyte differentiation and insulin stimulated their movement to the cell surface. GLUT4 trafficking between endosomes and trans-Golgi network was regulated via an acidic targeting motif in the carboxy terminus of GLUT4, because a mutant lacking this motif was retained in endosomes. We conclude that GLUT4 is rapidly transported from the cell surface to a subdomain of the trans-Golgi network that is enriched in the t-SNAREs Syntaxins 6 and 16 and that an acidic targeting motif in the C-terminal tail of GLUT4 plays an important role in this process.
Resumo:
Background: Colorectal cancers (CRCs) may be categorised according to the degree of microsatellite instability (MSI) exhibited, as MSI-high (MSI-H), MSI-low (MSI-L), or microsatellite stable (MSS). MSI-H status confers a survival advantage to patients with sporadic CRC. Aims: To determine if low levels of MSI are related to the clinicopathological features and prognosis of sporadic stage C CRC. Patients: A total of 255 patients who underwent resection for sporadic stage C CRC were studied. No patient received chemotherapy. Minimum follow up was five years. Methods: DNA extracted from archival malignant and non-malignant tissue was amplified by polymerase chain reaction using a panel of 11 microsatellites. MSI-H was defined as instability at greater than or equal to40% of markers, MSS as no instability, and MSI-L as instability at >0% but,40% of markers. Patients with MSI-H CRC were excluded from analysis as they have previously been shown to have better survival. Results: Thirty three MSI-L and 176 MSS CRCs were identified. There was no difference in biological characteristics or overall survival of MSI-L compared with MSS CRC but MSI-L was associated with poorer cancer specific survival (hazard ratio 2.0 (95% confidence interval 1.1-3.6)). Conclusions: Sporadic MSI-L and MSS CRCs have comparable clinicopathological features. Further studies are required to assess the impact of MSI-L on prognosis.
Resumo:
Given that an important functional attribute of stem cells in vivo is their ability to sustain tissue regeneration, we set out to establish a simple and easy technique to assess this property from candidate populations of human keratinocyte stem cells in an in vivo setting. Keratinocytes were inoculated into devitalized rat tracheas and transplanted subcutaneously into SCID mice, and the epithelial lining regenerated characterized to establish the validity of this heterotypic model. Furthermore, the rate and quality of epidermal tissue reconstitution obtained from freshly isolated unfractionated vs. keratinocyte stem cell-enriched populations was tested as a function of (a) cell numbers inoculated; and (b) the inclusion of irradiated support keratinocytes and dermal cells. Rapid and sustained epidermal tissue regeneration from small numbers of freshly isolated human keratinocyte stem cells validates the utilization of this simple and reliable model system to assay for enrichment of epidermal tissue-reconstituting cells.
Resumo:
In the process of internalization of molecules from the extracellular milieu, a cell uses multiple endocytic pathways, consequently generating different endocytic vesicles. These primary endocytic vesicles are targeted to specific destinations inside the cell. Here, we show that GPI-anchored proteins are internalized by an Arf6-independent mechanism into GPI-anchored protein-enriched early endosomal compartments (GEECs). Internalized GPI-anchored proteins and the fluid phase are first visualized in GEECs that are acidic, primary endocytic structures, negative for early endosomal markers, Rab4, Rab5, and early endosome antigen (EEA)1. They subsequently acquire Rab5 and EEA1 before homotypic fusion with other GEECs, and heterotypic fusion with endosomes containing cargo from the clathrin-dependent endocytic pathway. Although, the formation of GEECs is unaffected by inhibition of Rab5 GTPase and phosphatidylinositol-3'-kinase (PI3K) activity, their fusion with sorting endosomes is dependent on both activities. Overexpression of Rab5 reverts PI3K inhibition of fusion, providing evidence that Rab5 effectors play important roles in heterotypic fusion between the dynamin-independent GEECs and clathrin- and dynamin-dependent sorting endosomes.
Resumo:
The enhanced biological phosphorus removal (EBPR) process is regularly used for the treatment of wastewater, but suffers from erratic performance. Successful EBPR relies on the growth of bacteria called polyphosphate-accumulating organisms (PAOs), which store phosphorus intracellularly as polyphosphate, thus removing it from wastewater. Metabolic models have been proposed which describe the measured chemical transformations, however genetic evidence is lacking to confirm these hypotheses. The aim of this research was to generate a metagenomic library from biomass enriched in PAOs as determined by phenotypic data and fluorescence in situ hybridisation (FISH) using probes specific for the only described PAO to date, Candidatus Accumulibacter phosphatis. DNA extraction methods were optimised and two fosmid libraries were constructed which contained 93 million base pairs of metagenomic data. Initial screening of the library for 16S rRNA genes revealed fosmids originating from a range of non-pure-cultured wastewater bacteria. The metagenomic libraries constructed will provide the ability to link phylogenetic and metabolic data for bacteria involved in nutrient removal from wastewater. Keywords DNA extraction; EBPR; metagenomic library; 16S rRNA gene.
Resumo:
The effects of free ammonia (FA; NH3) and free nitrous acid (FNA; HNO2) concentrations on the metabolisms of an enriched ammonia oxidizing bacteria (AOB) culture were investigated using a method allowing the decoupling of growth and energy generation processes. A lab-scale sequencing batch reactor (SBR) was operated for the enrichment of an AOB culture. Fluorescent in-situ hybridization (FISH) analysis showed that 82% of the bacterial population in the SBR bound to the NEU probe specifically designed for Nitrosomonas europaea. Batch tests were carried out to measure the oxygen and ammonium consumption rates by the culture at various FA and FNA levels, in the presence or absence of inorganic carbon (CO2, HCO3, and CO32-). It was revealed that FA of up to 16.0 mgNH(3)-N (.) L-1, which was the highest concentration used in this study, did not have any inhibitory effect on either the catabolic or anabolic processes of the Nitrosomonas culture. In contrast, FNA inhibited both the growth and energy production capabilities of the Nitrosomonas culture. The inhibition on growth initiated at approximately 0.10 mgHNO(2)-(NL-1)-L-., and the data suggested that the biosynthesis was completely stopped at an FNA concentration of 0.40 mgHNO(2)-N (.) L-1. The inhibition on energy generation initiated at a slightly lower level but the Nitrosomonas culture was still oxidizing ammonia at half of the maximum rate at an FNA concentration of 0.50-0.63 mgHNO(2)-N (.) L-1. The affinity constant of the Nitrosomonas culture with respect to ammonia was determined to be 0.36 mgNH3-N (.) L-1, independent of the presence or absence of inorganic carbon. (c) 2006 Wiley Periodicals, Inc.
Resumo:
The dorsalis complex contains some of the most economically important fruit fly pests of the Asia-Pacific regions, including Bactrocera dorsalis, Bactrocera papayae and Bactrocera carambolae. These species are morphologically indistinct and genetically very similar. We describe the development of 12 microsatellite markers isolated from a representative of the dorsalis complex, B. papayae. We show the potential utility of the B. papayae microsatellites and a set of microsatellites isolated from Bactrocera tryoni as population and species markers for the dorsalis complex.