108 resultados para macrocyclic lactones
Resumo:
SFTI-1 is a novel 14 amino acid peptide comprised of a circular backbone constrained by three proline residues, a hydrogen-bond network, and a single disulfide bond. It is the smallest and most potent known Bowman-Birk trypsin inhibitor and the only one with a cyclic peptidic backbone. The solution structure of [ABA(3,11)]SFTI-1, a disulfide-deficient analogue of SFTI-1, has been determined by H-1 NMR spectroscopy. The lowest energy structures of native SFTI-1 and [ABA(3,11)]SFTI-1 are similar and superimpose with a root-mean-square deviation over the backbone and heavy atoms of 0.26 +/- 0.09 and 1.10 +/- 0.22 Angstrom, respectively. The disulfide bridge in SFTI-1 was found to be a minor determinant for the overall structure, but its removal resulted in a slightly weakened hydrogen-bonding network. To further investigate the role of the disulfide bridge, NMR chemical shifts for the backbone H-alpha protons of two disulfide-deficient linear analogues of SFTI-1, [ABA(3,11)]SFTI-1[6,5] and [ABA(3,11)]SFTI-1[1,14] were measured. These correspond to analogues of the cleavage product of SFTI-1 and a putative biosynthetic precursor, respectively. In contrast with the cyclic peptide, it was found that the disulfide bridge is essential for maintaining the structure of these open-chain analogues. Overall, the hydrogen-bond network appears to be a crucial determinant of the structure of SFTI-1 analogues.
Resumo:
The synthesis, structural characterization, and photophysical behavior of a 14-membered tetraazamacrocycle with pendant 4-dimethylaminobenzyl (DMAB) and 9-anthracenylmethyl groups is reported (L-3, 6-((9-anthracenylmethyl)amino)-trans-6,13-dimethyl-13-((4-dimethylaminobenzyl)amino)-1,4,8,11-tetraaza-cyclotetradecane). In its free base form, this compound displays rapid intramolecular photoinduced electron transfer (PET) quenching of the anthracene emission, with both the secondary amines and the DMAB group capable of acting as electron donors. When complexed with Zn(II), the characteristic fluorescence of the anthracene chromophore is restored as the former of these pathways is deactivated by coordination. Importantly, it is shown that the DMAB group, which remains uncoordinated and PET active, acts only very weakly to quench emission, by comparison to the behavior of a model Zn complex lacking the pendant DMAB group, [ZnL2](2+) (Chart 1). By contrast, Stern-Volmer analysis of intermolecular quenching of [ZnL2](2+) by N,N-dimethylaniline (DMA) has shown that this reaction is diffusion limited. Hence, the pivotal role of the bridge in influencing intramolecular PET is highlighted.
Resumo:
The rate of electronic energy transfer (EET) between a naphthalene donor and an anthracene acceptor in [ZnL3]-(ClO4)(2) and [ZnL4](ClO4)(2) was determined by time-resolved fluorescence measurements, where L 3 and L 4 are the geometrical isomers of 6-[(anthracen-9-ylmethyl)amino]-trans-6,13-dimethyl-1,4,8,11-tetraazacyclotetradecane-13-amine (L-2), substituted with either a naphthalen-1-ylmethyl or naphthalen-2-ylmethyl donor, respectively. The energy transfer rate constant, k(EET), was determined to be (0.92 +/- 0.02) x 10(9) s(-1) for the naphthalen-1-ylmethyl-substituted isomer, while that for the naphthalen-2-ylmethyl-substituted isomer is somewhat faster, with k(EET) = (1.31 +/- 0.01) x 10(9) s(-1). The solid-state structure of [(ZnLCl)-Cl-3]ClO4 has been determined, and using molecular modeling calculations, the likely distributions of solution conformations in CH3CN have been evaluated for both complexes. The calculated conformational distributions in the common trans-III N-based isomeric form gave Forster EET rate constants that account for the differences observed and are in excellent agreement with the experimental values. It is shown that the full range of conformers must be considered to accurately reproduce the observed EET kinetics.
Resumo:
We have investigated the isomeric distribution and rearrangement of complexes of the type [CoXLn](2+,3+) (where X = Cl-, OH-, H2O, and L-n represents a pentadentate 13-, 14-, and 15-membered tetraaza or diaza-dithia (N-4 or N2S2) macrocycle bearing a pendant primary amine). The preparative procedures for chloro complexes produced almost exclusively kinetically preferred cis isomers (where the pendant primary amine is cis to the chloro ligand) that can be separated by careful cation-exchange chromatography. For L-13 and L-14 the so-called cis-V isomer is isolated as the kinetic product, and for L-15 the cis-VI form (an N-based diastereomer) is the preferred, while for the L-14(S) complex both cis-V and trans-I forms are obtained. All these complexes rearrange to form stable trans isomers in which the pendent primary amine is trans to the monodentate aqua or hydroxo ligand, depending on pH and the workup procedure. In total 11 different complexes have been studied. From these, two different trans isomers of [CoCIL14S](2+) have been characterized crystallographically for the first time in addition to a new structure of cis-V-[CoCIL14S](2+); all were isolated as their chloride perchlorate salts. Two additional isomers have been identified and characterized by NMR as reaction intermediates. The remaining seven forms correspond to the complexes already known, produced in preparative procedures. The kinetic, thermal, and baric activation parameters for all the isomerization reactions have been determined and involve large activation enthalpies and positive volumes of activation. Activation entropies indicate a very important degree of hydrogen bonding in the reactivity of the complexes, confirmed by density functional theory studies on the stability of the different isomeric forms. The isomerization processes are not simple and even some unstable intermediates have been detected and characterized as part of the above-mentioned 11 forms of the complexes. A common reaction mechanism for the isomerization reactions has been proposed for all the complexes derived from the observed kinetic and solution behavior.
Resumo:
The applicability of linear peptides as drugs is potentially limited by their susceptibility to proteolytic cleavage and poor bioavailability. Cyclotides are macrocyclic cystine-knotted mini-proteins that have a broad range of bioactivities and are exceptionally stable, being resistant to chemical, thermal and enzymatic degradation. The general limitations of peptides as drugs can potentially be overcome by using the cyclotide framework as a scaffold onto which new activities may be engineered. The potential use of cyclotides and related peptide scaffolds for drug design is evaluated herein, with reference to increasing knowledge of the structures and sequence diversity of natural cyclotides and the emergence of new approaches in protein engineering.
Resumo:
Bioassay-directed fractionation of the ethanol extracts of two Amphimedon spp. collected during trawling operations in the Great Australian Eight yielded four new macrocyclic lactone/lactams, amphilactams A-D (1-4). The amphilactams possess potent in vitro nematocidal properties, and their structures were assigned on the basis of detailed spectroscopic analysis and comparison with synthetic model compounds. The amphilactams feature both carbon skeletons and an enamino lactone/lactam moiety unprecedented in the natural products literature.
Resumo:
Kalata B1 is a member of a new family of polypeptides, isolated from. plants, which have a cystine knot structure embedded within an amide-cyclized backbone. This family of molecules are the largest known cyclic peptides, and thus, the mechanism of synthesis and folding is of great interest. To provide information about both these phenomena, we have synthesized kalata B1 using two distinct strategies. In the first, oxidation of the cysteine residues of a linear precursor peptide to form the correct disulfide bonds results in folding of the three-dimensional structure and preorganization of the termini in close proximity for subsequent cyclization. The second approach involved cyclization prior to oxidation. In the first method, the correctly folded peptide was produced only in the presence of partially hydrophobic solvent conditions. These conditions are presumably required to stabilize the surface-exposed hydrophobic residues. However,; in the synthesis,involving cyclization prior to oxidation, the cyclic reduced peptide folded to a significant degree in the absence of hydrophobic solvents and even more efficiently in the presence of hydrophobic solvents. Cyclization clearly has a major effect on the folding pathway and facilitates formation of the correctly disulfide-bonded form in aqueous solution; In addition to facilitating folding to a compact stable structure cyclization has an important effect on biological activity as assessed by hemolytic activity.
Resumo:
A Geodia species collected from southern Australian waters of the Great Australian Eight has yielded a potent new in vitro nematocidal agent identified as geodin A Mg salt (1), a new macrocyclic polyketide lactam tetramic acid magnesium salt. The structure for 1 was assigned on the basis of detailed spectroscopic analysis.
Resumo:
Preparation of a series of specific penta- and tetra-amine derivatives of Co-III and Cr-III with a neutral leaving ligand has been carried out in order to accomplish a fine tuning of the associativeness/dissociativeness of their substitution reactions. Spontaneous aquation reactions of the neutral ligands have been studied at variable temperature and pressure. Although rate constants and thermal activation parameters show an important degree of scatter, the values determined for the activation volumes of the substitution process illustrate the mechanistic fine tuning that may be achieved for these reactions. In all cases, in the absence of important steric constraints in the molecule, electronic inductive effects seem to be the most important factor accounting for the dissociative shifts observed both for pentaamine (i.e.Delta V double dagger=+4.0 or +14.0 cm(3) mol(-1) and +5.2 or +16.5 cm(3) mol(-1) for the aquation of cis- or trans-[Co(MeNH2)(NH3)(4)(DMF)](3+) and cis- or trans-[CoL15(DMF)](3+) respectively, where L-15 represents a pentaamine macrocyclic ligand), and tetraamine systems (i.e.Delta V double dagger=+4.1 or +8.4 cm(3) mol(-1) and -10.8 or -7.4 cm(3) mol(-1) for the aquation of cis-[Co(NH3)(4)Cl(DMAC)](2+) (DMAC=dimethylacetamide) or cis-[Co(en)(2)Cl(DMAC)](2+) and cis-[Cr(NH3)(4)Cl(DMF)](2+) or cis -[Cr(en)(2)Cl(DMF)](2+)). From the results, clear evidence is obtained which indicates that, only when the situation is borderline I-a/I-d, or the steric demands are increased dramatically, dissociative shifts are observed; in all other cases electronic inductive effects seem to be dominant for such a tuning of the substitution process.
Resumo:
The 12-membered macrocyclic ligand 1-thia-4,7, 10-triazacyclododecane ([12]aneN(3)S) has been synthesised, although upon crystallization from acetonitrile a product in which carbon dioxide had added to one secondary amine in the macrocyclic ring (H[12]aneN(3)SCO(2). H2O) was isolated and subsequently characterised by X-ray crystallography. The protonation constants for [12]aneN(3)S and stability constants with Zn(II), Pb(II), Cd(II) and Cu(II) have been determined either potentiometrically or spectrophotometrically in aqueous solution, and compared with those measured or reported for the ligands 1-oxa-4,7,10-triazacyclododecane ([12]aneN(3)O) and 1,4,7,10-tetraazacyclododecane ([12]aneN(4)). The magnitudes of the stability constants are consistent with trends observed previously for macrocyclic ligands as secondary amine donors are replaced with oxygen and thioether donors although the stability constant for the [Hg([12]aneN(4))](2+) complex has been estimated from an NMR experiment to be at least three orders of magnitude larger than reported previously. Zinc(II), mercury(II), lead(II), copper(II) and nickel(II) complexes of [12]aneN(3)S have been isolated and characterised by X-ray crystallography. In the case of copper(II), two complexes [Cu([12]aneN(3)S)(H2O)](ClO4)(2) and [Cu-2([12]aneN(3)S)(2)(OH)(2)](ClO4)(2) were isolated, depending on the conditions employed. Molecular mechanics calculations have been employed to investigate the relative metal ion size preferences of the [3333], asym-[2424] and sym-[2424] conformation isomers. The calculations predict that the asym-[2424] conformer is most stable for M-N bond lengths in the range 2.00-2.25 Angstrom whilst for the larger metal ions the [3333] conformer is dominant. The disorder seen in the structure of the [Zn([12]aneN(3)S)(NO3)](+) complex is also explained by the calculations. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
Several macrocyclic peptides (similar to 30 amino acids), with diverse biological activities, have been isolated from the Rubiaceae and Violaceae plant families over recent years. We have significantly expanded the range of known macrocyclic peptides with the discovery of 16 novel peptides from extracts of Viola hederaceae, Viola odorata and Oldenlandia affinis. The Viola plants had not previously been examined for these peptides and thus represent novel species in which these unusual macrocyclic peptides are produced. Further, we have determined the three-dimensional struc ture of one of these novel peptides, cycloviolacin O1, using H-1 NMR spectroscopy. The structure consists of a distorted triple-stranded beta-sheet and a cystine-knot arrangement of the disulfide bonds. This structure is similar to kalata B1 and circulin A, the only two macrocyclic peptides for which a structure was available, suggesting that despite the sequence variation throughout the peptides they form a family in which the overall fold is conserved. We refer to these peptides as the cyclotide family and their embedded topology as the cyclic cystine knot (CCK) motif. The unique cyclic and knotted nature of these molecules makes them a fascinating example of topologically complex proteins. Examination of the sequences reveals they can be separated into two subfamilies, one of which tends to contain a larger number of positively charged residues and has a bracelet-like circularization of the backbone. The second subfamily contains a backbone twist due to a cis-Pro peptide bond and may conceptually be regarded as a molecular Moebius strip. Here we define the structural features of the two apparent subfamilies of the CCK peptides which may be significant for the likely defense related role of these peptides within plants. (C) 1999 Academic Press.
Resumo:
The potentially sexidentate polyamine macrocycle 15-methyl-1,4,7,10,13-pentaazacyclohexadecan-15-amine (1) was prepared via a copper(II)-templated route from 3,6,9-triazaundecan-1,ll-diamine, formaldehyde and nitroethane which first formed the copper(II) complex of the macrocycle 15-methyl-15-nitro-1,4,7,10,13-pentaazacyclohexadecane (2), reduced subsequently with zinc and aqueous acid to yield 1. The hexaamine 1, with five secondary amine groups in the macrocyclic ring and one pendant primary amine group, forms inert sexidentate octahedral complexes with cobalt(III), chromium(III) and iron(III). An X-ray structure of [Co(1)](ClO4)(3) defines the distorted octahedron of the complex cation and shows it is a symmetrical isomer with all nitrogens bound and the central aza group trans to the pendant primary amine group. The [M(1)](3+) ions are all stable indefinitely in aqueous solution and exhibit spectra consistent with MN6 d(3) (Cr), low-spin d(5) (Fe) and low-spin d(6) (Co) electronic ground states. For each complex, a reversible M(III/II) redox couple is observed. (C) 2000 Elsevier Science S.A. All rights reserved.