98 resultados para late chromosome migration
Resumo:
Experiments were conducted to investigate the effect of Lolium rigidum (annual ryegrass) seed developmental stage and application rate of glyphosate and SpraySeed (paraquat 135 g/L+ diquat 115 g/L) on the number, germinability, and fitness of seeds produced. Glyphosate (450 g/L) was most effective when applied at a rate of 0.5-1 L/ha during heading and anthesis, reducing the number of filled seeds produced compared with unsprayed plants. Application post-anthesis, when seeds were at the milk to soft dough stage, was less effective. SpraySeed was most effective when applied post-anthesis, during the milk and early dough stages of seed development at a rate of 0.5-1L/ha, resulting in the production of few viable seeds. Although some filled seeds were produced, most of the seeds were dead. Application during anthesis or once the seeds reached soft dough stage was less effective. For both herbicides, those seeds that were capable of germinating were smaller and had slower radicle and coleoptile growth, resulting in slower early seedling growth and reduced biomass production within the first month of growth. Additionally, glyphosate application reduced the proportion of seeds exhibiting dormancy. The anticipated reduction in seed competitive ability and altered emergence timing resulting from late-season herbicide application, even when application timing is not optimal, could be exploited to reduce the likelihood of successful L. rigidum establishment in the following season.
Resumo:
The specific role of the hypothalamus in regulating the developmental profile of anterior pituitary (AP) cells remains largely unknown. The present study evaluated hypothalamic contributions to AP cell development, utilizing the technique of hypothalamo-pituitary disconnection (HPD). HPD of fetal sheep or sham surgery was performed at 110 days gestation (d) (n=6 each group; term ~ 147d). Fetuses were removed and pituitaries collected at 110d (no surgery; n=6) or 141d (sham and HPD groups). The impact of HPD on AP cell development was assessed by single-labeled immunofluorescence for five hormones to identify proportions of AP cells expressing each hormone. HPD was associated with a 70% increase (P
Resumo:
The prepartum surge in fetal plasma cortisol is essential for the normal timing of parturition in sheep and may result from an increase in the ratio of ACTH to proopiomelanocortin (POMC) in the fetal circulation. In fetuses subjected to experimental induction of placental restriction, the prepartum surge in fetal cortisol is exaggerated, whereas pituitary POMC mRNA levels are decreased, and in vitro, unstimulated ACTH secretion is elevated in corticotrophs nonresponsive to CRH. We therefore investigated the changes in the relative proportions of cells expressing POMC, ACTH, and the CRH type 1 receptor (CRHR1) shortly before birth and during chronic placental insufficiency. Placental restriction (PR) was induced by removal of the majority of placental attachment sites in five ewes before mating. Pituitaries were collected from control and PR fetal sheep at 140 d (control, n = 4; PR, n = 4) and 144 d (control, n = 6; PR, n = 4). Pituitary sections were labeled with specific antisera raised against POMC, ACTH, and CRHR1. Three major subpopulations of corticotrophs were identified that expressed POMC + ACTH + CRHR1, ACTH + CRHR1, or POMC only. The proportion of pituitary corticotrophs expressing POMC + ACTH + CRHR1 decreased (P < 0.05) between 140 (control, 60 +/- 1%; PR, 66 +/- 4%) and 144 (control, 45 +/- 2%; PR, 56 +/- 6%) d. A significantly higher (P < 0.05) proportion of corticotrophs expressed POMC + ACTH + CRHR1 in the pituitary of the PR group compared with controls. This study is the first to demonstrate subpopulations of corticotrophs in the fetal sheep pituitary that differentially express POMC, ACTH, and CRHR1 and the separate effects of gestational age and placental restriction on these subpopulations of corticotrophs.
Resumo:
Light is generally regarded as the most likely cue used by zooplankton to regulate their vertical movements through the water column. However, the way in which light is used by zooplankton as a cue is not well understood. In this paper we present a mathematical model of diel vertical migration which produces vertical distributions of zooplankton that vary in space and time. The model is used to predict the patterns of vertical distribution which result when animals are assumed to adopt one of three commonly proposed mechanisms for vertical swimming. First, we assume zooplankton tend to swim towards a preferred intensity of light. We then assume zooplankton swim in response to either the rate of change in light intensity or the relative rate of change in light intensity. The model predicts that for all three mechanisms movement is fastest at sunset and sunrise and populations are primarily influenced by eddy diffusion at night in the absence of a light stimulus. Daytime patterns of vertical distribution differ between the three mechanisms and the reasons for the predicted differences are discussed. Swimming responses to properties of the light field are shown to be adequate for describing diel vertical migration where animals congregate in near surface waters during the evening and reside at deeper depths during the day. However, the model is unable to explain how some populations halt their ascent before reaching surface waters or how populations re-congregate in surface waters a few hours before sunrise, a phenomenon which is sometimes observed in the held. The model results indicate that other exogenous or endogenous factors besides light may play important roles in regulating vertical movement.
Resumo:
In this paper we describe the assembly and restriction map of a 1.05-Mb cosmid contig spanning the candidate region for familial Mediterranean fever (FMF), a recessively inherited disorder of inflammation localized to 16p13.3. Using a combination of cosmid walking and screening for P1, PAC, BAG, and YAC clones, we have generated a contig of genomic clones spanning similar to 1050 kb that contains the FMF critical region. The map consists of 179 cosmid, 15 P1, 10 PAC, 3 BAG, and 17 YAC clones, anchored by 27 STS markers. Eight additional STSs have been developed from the similar to 700 kb immediately centromeric to this genomic region. Five of the 35 STSs are microsatellites that have not been previously reported. NotI and EcoRI mapping of the overlapping cosmids, hybridization of restriction fragments from cosmids to one another, and STS analyses have been used to validate the assembly of the contig. Our contig totally subsumes the 250-kb interval recently reported, by founder haplotype analysis, to contain the FMF gene. Thus, our high-resolution clone map provides an ideal resource for transcriptional mapping toward the eventual identification of this disease gene. (C) 1997 Academic Press.
Resumo:
The identification of genes responsible for the rare cases of familial leukemia may afford insight into the mechanism underlying the more common sporadic occurrences. Here we test a single family with 11 relevant meioses transmitting autosomal dominant acute myelogenous leukemia (AML) and myelodysplasia for linkage to three potential candidate loci. In a different family with inherited AML, linkage to chromosome 21q22.1-22.2 was recently reported; we exclude linkage to 21q22.1-22.2, demonstrating that familial AML is a heterogeneous disease. After reviewing familial leukemia and observing anticipation in the form of a declining age of onset with each generation, we had proposed 9p21-22 and 16q22 as additional candidate loci. Whereas linkage to 9p21-22 can be excluded, the finding of a maximum two-point LOD score of 2.82 with the microsatellite marker D16S522 at a recombination fraction theta = 0 provides evidence supporting linkage to 16q22. Haplotype analysis reveals a 23.5-cM (17.9-Mb) commonly inherited region among all affected family members extending from D16S451 to D1GS289, In order to extract maximum linkage information with missing individuals, incomplete informativeness with individual markers in this interval, and possible deviance from strict autosomal dominant inheritance, we performed nonparametric linkage analysis (NPL) and found a maximum NPL statistic corresponding to a P-value of .00098, close to the maximum conditional probability of linkage expected for a pedigree with this structure. Mutational analysis in this region specifically excludes expansion of the AT-rich minisatellite repeat FRA16B fragile site and the CAG trinucleotide repeat in the E2F-4 transcription factor. The ''repeat expansion detection'' method, capable of detecting dynamic mutation associated with anticipation, more generally excludes large CAG repeat expansion as a cause of leukemia in this family.
Characterizing insect migration systems in inland Australia with novel and traditional methodologies