92 resultados para individualization options
Resumo:
Objective To compare mortality burden estimates based on direct measurement of levels and causes in communities with indirect estimates based on combining health facility cause-specific mortality structures with community measurement of mortality levels. Methods. Data from sentinel vital registration (SVR) with verbal autopsy (VA) were used to determine the cause-specific mortality burden at the community level in two areas of the United Republic of Tanzania. Proportional cause-specific mortality structures from health facilities were applied to counts of deaths obtained by SVR to produce modelled estimates. The burden was expressed in years of life lost. Findings. A total of 2884 deaths were recorded from health facilities and 2167 recorded from SVR/VAs. In the perinatal and neonatal age group cause-specific mortality rates were dominated by perinatal conditions and stillbirths in both the community and the facility data. The modelled estimates for chronic causes were very similar to those from SVR/VA. Acute febrile illnesses were coded more specifically in the facility data than in the VA. Injuries were more prevalent in the SVR/VA data than in that from the facilities. Conclusion. In this setting, improved International classification of diseases and health related problems, tenth revision (ICD-10) coding practices and applying facility-based cause structures to counts of deaths from communities, derived from SVR, appears to produce reasonable estimates of the cause-specific mortality burden in those aged 5 years and older determined directly from VA. For the perinatal and neonatal age group, VA appears to be required. Use of this approach in a nationally representative sample of facilities may produce reliable national estimates of the cause-specific mortality burden for leading causes of death in adults.
Resumo:
This paper describes an experiment in designing, implementing and testing a Transport layer cluster scheduling and dispatching architecture. The motivation for the experiment was the hypothesis that a Transport layer clustering solution may offer advantantages over the existing industry-standard Network layer and Data Link Layer approaches. The critical success factors initially established to guide and evaluate the experiment were reduced dispatcher work load, reduced dispatcher internal state memory requirements, distributed denial of service resilience, and cluster software design simplicity. The functional design stage of the experiment produced a Transport layer strategy for scheduling and load balancing based on the specification of two new TCP options. Implementation required the introduction of the newly specified TCP options into the Linux (2.4) kernel. The implementation produced an extended Linux Socket API to facilitate user-process access to the additional TCP capability. The testing stage of the experiment confirmed the operational efficiency of the solution.
Resumo:
A deregulated electricity market is characterized with uncertainties, with both long and short terms. As one of the major long term planning issues, the transmission expansion planning (TEP) is aiming at implementing reliable and secure network support to the market participants. The TEP covers two major issues: technical assessment and financial evaluations. Traditionally, the net present value (NPV) method is the most accepted for financial evaluations, it is simple to conduct and easy to understand. Nevertheless, TEP in a deregulated market needs a more dynamic approach to incorporate a project's management flexibility, or the managerial ability to adapt in response to unpredictable market developments. The real options approach (ROA) is introduced here, which has clear advantage on counting the future course of actions that investors may take, with understandable results in monetary terms. In the case study, a Nordic test system has been testified and several scenarios are given for network expansion planning. Both the technical assessment and financial evaluation have been conducted in the case study.
Resumo:
To evaluate an investment project in the competitive electricity market, there are several key factors that affects the project's value: the present value that the project could bring to investor, the possible future course of actions that investor has and the project's management flexibility. The traditional net present value (NPV) criteria has the ability to capture the present value of the project's future cash flow, but it fails to assess the value brought by market uncertainty and management flexibility. By contrast with NPV, the real options approach (ROA) method has the advantage to combining the uncertainty and flexibility in evaluation process. In this paper, a framework for using ROA to evaluate the generation investment opportunity has been proposed. By given a detailed case study, the proposed framework is compared with NPV and showing a different results