114 resultados para inate immunity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Individuals living in regions where malaria is endemic develop an acquired immunity to malaria which enables them to remain asymptomatic while still carrying parasites. Field studies indicate that cumulative exposure to a variety of diverse Plasmodium parasites is required for the transition from symptomatic to asymptomatic malaria. This study used a simulation model of the within-host dynamics of P. falciparum to investigate the development of acquired clinical immunity under different transmission conditions and levels of parasite diversity. Antibodies developed to P. falciparum erythrocyte membrane protein 1 (PfEMP1), a clonally variant molecule, were assumed to be a key human immunological response to P. falciparum infection, along with responses to clonally conserved but polymorphic antigens. The time to the development of clinical immunity was found to be proportional to parasite diversity and inversely proportional to transmission intensity. The effect of early termination of symptomatic infections by chemotherapy was investigated and found not to inhibit the host's ability to develop acquired immunity. However, the time required to achieve this state was approximately double that compared to when no treatment was administered. This study demonstrates that an immune response primarily targeted against PfEMP1 has the ability to reduce clinical symptoms of infections irrespective of whether treatment is administered, supporting its role in the development of acquired clinical immunity. The results also illustrate a novel use for simulation models of P. falciparum infections, investigation of the influence of intervention strategies on the development of naturally acquired clinical immunity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dendritic cells (DCs) regulate various aspects of innate immunity, including natural killer (NK) cell function. Here we define the mechanisms involved in DC - NK cell interactions during viral infection. NK cells were efficiently activated by murine cytomegalovirus ( MCMV) - infected CD11b(+) DCs. NK cell cytotoxicity required interferon-alpha and interactions between the NKG2D activating receptor and NKG2D ligand, whereas the production of interferon-gamma by NK cells relied mainly on DC-derived interleukin 18. Although Toll-like receptor 9 contributes to antiviral immunity, we found that signaling pathways independent of Toll-like receptor 9 were important in generating immune responses to MCMV, including the production of interferon-alpha and the induction of NK cell cytotoxicity. Notably, adoptive transfer of MCMV-activated CD11b(+) DCs resulted in improved control of MCMV infection, indicating that these cells participate in controlling viral replication in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RNA replicons offer a number of qualities which make them attractive as vaccination vectors. Both alphavirus and flavivirus replicon vaccines have been investigated in preclinical models yet there has been little direct comparison of the two vector systems. To determine whether differences in the biology of the two vectors influence immunogenicity, we compared two prototypic replicon vectors based on Semliki Forest virus (SFV) (alphavirus) and Kunjin virus (KUN) (flavivirus). Both vectors when delivered as naked RNAs elicited comparable CD8+ T cell responses but the SFV vectors elicited greater humoral responses to an encoded cytoplasmic antigen beta-galactosidase. Studies in MHC class II-deficient mice revealed that neither vector could overcome the dependence of CD4+ T cell help in the development of humoral and cellular responses following immunization. These studies indicate that the distinct biology of the two replicon systems may differentially impact the adaptive immune response and this may need to be considered when designing vaccination strategies. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanisms responsible for the immunosuppression associated with sepsis or some chronic blood infections remain poorly understood. Here we show that infection with a malaria parasite (Plasmodium berghei) or simple systemic exposure to bacterial or viral Toll-like receptor ligands inhibited cross-priming. Reduced cross-priming was a consequence of downregulation of cross-presentation by activated dendritic cells due to systemic activation that did not otherwise globally inhibit T cell proliferation. Although activated dendritic cells retained their capacity to present viral antigens via the endogenous major histocompatibility complex class I processing pathway, antiviral responses were greatly impaired in mice exposed to Toll-like receptor ligands. This is consistent with a key function for cross-presentation in antiviral immunity and helps explain the immunosuppressive effects of systemic infection. Moreover, inhibition of cross-presentation was overcome by injection of dendritic cells bearing antigen, which provides a new strategy for generating immunity during immunosuppressive blood infections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mobilization is now used worldwide to collect large numbers of hematopoietic stem and progenitor cells (HSPCs) for transplantation. Although the first mobilizing agents were discovered largely by accident, discovery of more efficient mobilizing agents will require a better understanding of the molecular mechanisms responsible. During the past 5 years, a number of mechanisms have been identified, shedding new light on the dynamics of the hematopoietic system in vivo and on the intricate relationship between hematopoiesis, innate immunity, and bone. After briefly reviewing the mechanisms by which circulating HSPCs home into the bone marrow and what keeps them there, the current knowledge of mechanisms responsible for HSPC mobilization in response to hematopoietic growth factors such as granulocyte colony-stimulating factor, chemotherapy, chemokines, and polyanions will be discussed together with current strategies developed to further increase HSPC mobilization. (c) 2006 International Society for Experimental Hematology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The trafficking of molecules and membranes within cells is a prerequisite for all aspects of cellular immune functions, including the delivery and recycling of cell-surface proteins, secretion of immune mediators, ingestion of pathogens and activation of lymphocytes. SNARE (soluble-N-ethylmaleimide-sensitive-factor accessory-protein receptor)-family members mediate membrane fusion during all steps of trafficking, and function in almost all aspects of innate and adaptive immune responses. Here, we provide an overview of the roles of SNAREs in immune cells, offering insight into one level at which precision and tight regulation are instilled on immune responses.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The extensive antigenic variation phenomena African trypanosomes display in their mammalian host have hampered efforts to develop effective vaccines against trypanosomiasis. Human disease management aims largely to treat infected hosts by chemotherapy, whereas control of animal diseases relies on reducing tsetse populations as well as on drug therapy. The control strategies for animal diseases are carried out and financed by livestock owners, who have an obvious economic incentive. Sustaining largely insecticide-based control at a local level and relying on drugs for treatment of infected hosts for a disease for which there is no evidence of acquired immunity could prove extremely costly in the long run. It is more likely that a combination of several methods in an integrated, phased and area-wide approach would be more effective in controlling these diseases and subsequently improving agricultural output. New approaches that are environmentally acceptable, efficacious and affordable are clearly desirable for control of various medically and agriculturally important insects including tsetse. Here, Serap Aksoy and colleagues discuss molecular genetic approaches to modulate tsetse vector competence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Natural killer (NK) cells are an important component of the innate cellular immune system. They are particularly important during the early immune responses following virus infection, prior to the induction of cytotoxic T cells (CTL). Unlike CTL, which recognize specific peptides displayed on the surface of cells by class I MHC, NK cells respond to aberrant expression of cell surface molecules, in particular class I MHC, in a non-specific manner. Thus, cells expressing low levels of surface class I MHC are susceptible to recognition by NK cells, with concomitant triggering of cytolytic and cytokine-mediated responses. Many viruses, including the cytomegaloviruses, downregulate cell surface MHC class I: this is likely to provide protection against CTL-mediated clearance of infected cells, but may also render infected cells sensitive to NK-cell attack. This review focuses upon cytomegalovirus-encoded proteins that are believed to promote evasion of NK-cell-mediated immunity. The class I MHC homologues, encoded by all cytomegaloviruses characterised to date, have been implicated as molecular 'decoys', which may mimic the ability of cellular MHC class I to inhibit NK-cell functions. Results from studies in vitro are not uniform, but in general they support the proposal that the class I homologues engage inhibitory receptors from NK cells and other cell types that normally interact with cellular class I. Consistent with this, in vivo studies of murine cytomegalovirus indicate that the class I homologue is required for efficient evasion of NK-cell-mediated clearance. Recently a second murine cytomegalovirus protein, a C-C chemokine homologue, has been implicated as promoting evasion of NK and T-cell-mediated clearance in vivo.