49 resultados para high-strength steel
Resumo:
The initiation of stress corrosion cracking (SCC) was studied using scanning electron microscope observations of linearly increasing stress test specimens. SCC initiation from the following surfaces was studied: (i) initiation from the commercial pipe surface covered by the Zn coating, (ii) initiation from a mechanically polished surface with a deformed layer, and (iii) initiation from an electro-polished surface. SCC initiation involved different features for these surfaces as follows. (i) For the Zn coated commercial pipe surface, a crack in the Zn coating led to the dissolution of the deformed layer and when the deformed layer was penetrated, intergranular SCC initiation became possible. (ii) For a mechanically polished surface with a deformed layer, cracks in the surface oxide concentrated the anodic dissolution to such an extent that there was transgranular SCC in the deformed layer. SCC was intergranular when the deformed layer had been penetrated. Transgranular stress corrosion cracks were stopped at ferrite grain boundaries (GBs) oriented perpendicular to the SCC propagation direction. (iii) For an electro-polished surface, the surface oxide film was cracked at many locations, but intergranular SCC only propagated into the steel when the oxide crack corresponded to a GB. An oxide crack away from a GB is expected to be healed. The observed SCC initiation mechanism was not associated with simple preferential chemical attack of the ferrite GBs. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Despite experimental evidences, the contributions of the concrete slab and composite action to the vertical shear strength of simply supported steel-concrete composite beams are not considered in current design codes, which lead to conservative designs. In this paper, the finite element method is used to investigate the flexural and shear strengths of simply supported composite beams under combined bending and shear. A three-dimensional finite element model has been developed to account for geometric and material nonlinear behavior of composite beams, and verified by experimental results. The verified finite element model is than employed to quantify the contributions of the concrete slab and composite action to the moment and shear capacities of composite beams. The effect of the degree of shear connection on the vertical shear strength of deep composite beams loaded in shear is studied. Design models for vertical shear strength including contributions from the concrete slab and composite action and for the ultimate moment-shear interaction ate proposed for the design of simply supported composite beams in combined bending and shear. The proposed design models provide a consistent and economical design procedure for simply supported composite beams.
Resumo:
The aim Of this study was to develop a steel powder system for rapid tooling applications. The properties required are rapid densification, dimensional precision. high mechanical strength and corrosion resistance. To this end. the densification and microstructural development of a loose packed 200 grade maraging steel powder sintered with ferrophosphorous additions was examined. Liquid initially formed from a reaction of the Fe3P and carbon, which was a residue of the polymeric binder used to shape the powder compact. This liquid caused a burst of sintering which ceased as the liquid dissipated. On further heating, a phosphorous rich supersolidus liquid appeared at triple points and grain boundaries leading to rapid densification and a sintered density of 98%.
Resumo:
The yield strength of high-pressure diecast (hpdc) test bars of alloy AZ91 increases with decreasing section thickness while its hardness remains approximately constant. This behaviour is in contrast with that of the gravity cast alloy, whose hardness scales with the yield strength. Vickers hardness measured on the surface of hpdc test bars using increasing loads shows that the subsurface porosity layer usually found in hpdc material may gradually collapse under the indent, lowering the hardness. However, this is insufficient to explain the lack of correlation between hardness and yield strength. It is argued that the low strain-hardening rate of high-pressure diecast material leads to lower than expected hardness values. In addition, it is shown that the plastic zone under a macro indentation is largely contained by the softer core of the castings, rendering hardness insensitive to the casting thickness. It is concluded that macrohardness is too coarse a tool for a meaningful determination of the strength of hpdc material. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Microhardness maps of cross-sections of high-pressure diecast test bars of AZ91 have been determined. Specimens with rectangular cross-sections, 1, 2 and 3 mm thick, or with a circular cross-section 6.4 mm in diameter, have been studied. The hardness is generally higher near the edges in all specimens, and more so near the corners of the rectangular specimens. The hardness at the center of the castings is generally lower, due to a coarser solidification microstructure and the concentration of porosity. The evidence confirms that the surface of the castings is harder than the core, but it does not support the concept of a skin with a sharp. and definable boundary. This harder layer is irregular in hardness and depth and is not equally hard on opposite sides of the casting. The mean hardness obtained by integrating the microhardness maps over the entire cross-section increased with decreasing thickness of the bars, and was found to be in good correlation with each bar's yield strength. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
In natural estuaries, the predictions of scalar dispersion are rarely predicted accurately because of a lack of fundamental understanding of the turbulence structure in estuaries. Herein detailed turbulence field measurements were conducted continuously at high frequency for 50 hours in the upper zone of a small subtropical estuary with semi-diurnal tides. Acoustic Doppler velocimetry was deemed the most appropriate measurement technique for such shallow water depths (less than 0.4 m at low tides), and a thorough post-processing technique was applied. In addition, some experiments were conducted in laboratory under controlled conditions using water and soil samples collected in the estuary to test the relationship between acoustic backscatter strength and suspended sediment load. A striking feature of the field data set was the large fluctuations in all turbulence characteristics during the tidal cycle, including the suspended sediment flux. This feature was rarely documented.
Resumo:
Background. A decline in muscle mass and muscle strength characterizes normal aging. As clinical and animal studies show it relationship between higher cytokine levels and low muscle mass, the aim of this study was to investigate whether markers, of inflammation are associated with muscle mass and strength in well-functioning elderly persons. Methods. We Used baseline data (1997-1998) of the Health, Aging, and Body Composition (Health ABC) Study on 3075 black and white men and women aged 70-79 years. Midthigh muscle cross-sectional area (computed tomography), appendicular muscle mass (dual-energy x-ray ab absorptiometry). isokinetic knee extensor strength (KinCom). and isometric inip strength were measured. plasma levels of interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-alpha) were assessed by enzyme-linked immunosorbent assay (ELISA). Results. Higher cytokine levels were generally associated with lower muscle mass and lower muscle strength. The most consistent relationship across the gender and race groups was observed for IL-6 and grip strength: per SD increase in IL-6, grip strength was 1.1 to 2.4 kg lower (p < .05) after adjustment for age, clinic Site. health status, medications, physical activity. smoking. height. and body fat. Ail overall measure of elevated cytokine level was created by combining the levels of IL-6 and TNF-alpha. With the exception of white men, elderly persons having high levels of IL-6 (> 1.80 pg/ml) as well as high levels of TNF-alpha (> 3.20 pg/ml) had a smaller muscle area, less appendicular mass. a lower knee extensor strength. and a lower grip strength compared to those with low levels of both cytokines. Conclusions. Higher plasma concentrations of IL-6 and TNF-alpha are associated with lower muscle mass and lower muscle strength in well-functioning older men and women. Higher cytokine levels. as often observed in healthy older persons. may contribute to the loss Of muscle mass and strength that accompanies aging.
Resumo:
This paper reviews the current understanding of the mechanisms of stress corrosion cracking of pipeline steels. The similarities, the differences and the influencing factors are considered for the high pH stress corrosion cracking caused by a concentrated bicarbonate-carbonate solution, and for the low pH stress corrosion cracking due to a diluter solution. For high pH stress corrosion cracking, it is well accepted that the mechanism involves anodic dissolution for crack initiation and propagation. In contrast, it has been suggested that the low pH stress corrosion cracking is associated with the dissolution of the crack tip and sides, accompanied by the ingress of hydrogen into the pipeline steel. But the precise influence of hydrogen on the mechanism needs to be further studied. (C) 2003 Kluwer Academic Publishers.
Resumo:
Event-related potentials (ERPs) were recorded while subjects made old/new recognition judgments on new unstudied words and old words which had been presented at study either once ('weak') or three times ('strong'). The probability of an 'old' response was significantly higher for strong than weak words and significantly higher for weak than new words. Comparisons were made initially between ERPs to new, weak and strong words, and subsequently between ERPs associated with six strength-by-response conditions. The N400 component was found to be modulated by memory trace strength in a graded manner. Its amplitude was most negative in new word ERPs and most positive in strong word ERPs. This 'N400 strength effect' was largest at the left parietal electrode (in ear-referenced ERPs). The amplitude of the late positive complex (LPC) effect was sensitive to decision accuracy (and perhaps confidence). Its amplitude was larger in ERPs evoked by words attracting correct versus incorrect recognition decisions. The LPC effect had a left > right, centro-parietal scalp topography (in ear-referenced ERPs). Hence, whereas, the majority of previous ERP studies of episodic recognition have interpreted results from the perspective of dual-process models, we provide alternative interpretations of N400 and LPC old/new effects in terms of memory strength and decisional factor(s). (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
High removal rate (up to 16.6 mm(3)/s per mm) grinding of alumina and alumina-titania was investigated with respect to material removal and basic grinding parameters using a resin-bond 160 mu m grit diamond wheel at the speeds of 40 and 160 m/s, respectively. The results show that the material removal for the single-phase polycrystalline alumina and the two-phase alumina-titania composite revealed identical mechanisms of microfracture and grain dislodgement under the grinding conditioned selected. There were no distinct differences in surface roughness and morphology for both materials ground at either conventional or high speed. An increase in material removal rate did not necessarily worsen the surface toughness for the two materials at both speeds. Also the grinding forces for the two ceramics demonstrated similar characteristics at any grinding speeds and specific removal rates. Both normal and tangential grinding forces and their force ratios at the high speed were lower than those at the conventional speed, regardless of removal rates. An increase in specific removal rate caused more rapid increases in normal and tangential forces obtained at the conventional grinding speed than those at the high speed. Furthermore, it is found that the high speed grinding at all the removal rates exerted a great amount of coolant-induced normal forces in grinding zone, which were 4-6 times higher than the pure normal grinding forces. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Conducting dielectric samples are often used in high-resolution experiments at high held. It is shown that significant amplitude and phase distortions of the RF magnetic field may result from perturbations caused by such samples. Theoretical analyses demonstrate the spatial variation of the RF field amplitude and phase across the sample, and comparisons of the effect are made for a variety of sample properties and operating field strengths. Although the effect is highly nonlinear, it tends to increase with increasing field strength, permittivity, conductivity, and sample size. There are cases, however, in which increasing the conductivity of the sample improves the homogeneity of the amplitude of the RF field across the sample at the expense of distorted RF phase. It is important that the perturbation effects be calculated for the experimental conditions used, as they have the potential to reduce the signal-to-noise ratio of NMR experiments and may increase the generation of spurious coherences. The effect of RF-coil geometry on the coherences is also modeled, with the use of homogeneous resonators such as the birdcage design being preferred, Recommendations are made concerning methods of reducing sample-induced perturbations. Experimental high-field imaging and high-resolution studies demonstrate the effect. (C) 1997 Academic Press.
Resumo:
As nuclear magnetic resonance imaging and spectroscopy move inexorably toward higher field-strength magnets in search of improved signal-to-noise ratio, spectral resolution, and spatial resolution, the way in which radiofrequency (RF) probes are designed changes. At higher frequencies, resonant cavities become the favored RF ''coil'' type and may be built using streamline elements to reduce the inductance of the system. In modeling such systems, the quasi-static approach of assuming that current flows evenly in all conductor cross sections and that adjacent conductors do not affect each other becomes less reasonable. The proximity of RF conductors in resonators typically causes RF eddy currents to flow, whereby the current density in each rung is altered by the RF fields generated by nearby conductors. The proper understanding and prediction of how resonators will perform require a model of the current densities flowing in conducting sections, including all RF eddy current effects. Very few models of this type have been presented in the literature. This article presents an overview of one such model and of how it may be applied to a variety of resonators, both shielded and unshielded, circular, and elliptical, in cross section. Results are presented from a shielded head coil operating at 2 tesla. (C) 1997 John Wiley & Sons, Inc.
Resumo:
Objective: To describe the associations between hand osteoarthritis (OA), pain and disability in males and females and to further validate the Australian/Canadian CA hand index (AUSCAN LK3.0). Design: Cross-sectional study of 522 subjects from 101 Tasmanian families (males N=174, females N=348). Hand OA was assessed by two observers using the Altman atlas for joint space narrowing and osteophytes at distal interphalangeal and first carpometacarpal joints as well as a score for Heberden's nodes based on hand photography. Hand pain and function were assessed by the AUSCAN LK3.0 and grip strength by dynamometry in both hands on two occasions. Results: The prevalence of hand CA was high in this sample at 44-71% (depending on site). Pain and dysfunction increased with age while grip strength decreased (all P <0.001). All three measures were markedly worse in women, even after taking the severity of arthritis into account. Hand CA explained 5.7-10% of the variation in function, grip strength and pain scores, even after adjustment for age and sex. Further adjustment suggested that the osteoarthritic associations with function and grip strength were largely mediated by pain. Severity of disease was more strongly associated with these scores than presence or absence. Lastly, the AUSCAN LK3.0 showed a comparable association to grip strength with structural damage providing further evidence of index validity. Conclusions: Hand CA at these two sites makes substantial contributions to hand function, strength and pain. The associations with function and strength measures appear mediated by pain. Gender differences in all three measures persist after adjustment for variation in age and CA severity indicating that factors apart from radiographic disease are responsible. (C) 2001 OsteoArthritis Research Society International.
Resumo:
Co-crystallization of sucrose from a highly concentrated sucrose syrup (less than or equal to 7% moisture, w/w) at 131 degreesC with 0, 5, 10, 15, and 20% of fructose, glucose, or a mixture of fructose and glucose was investigated. The crystallization of sucrose was delayed in presence of these lower molecular weight sugars. The DSC melting endotherm of cocrystallized samples exhibited a decrease in crystalline sucrose in the sample as a function of increased level of glucose and fructose. The mechanical strength of co-crystallized granules was found to be related to the moisture content and the amount of glucose or fructose content in the sample. The samples containing 10, 15, and 20% glucose in co-crystallized product demonstrated crystallization of glucose in its monohydrate form during 1 mo of storage.
Resumo:
The aim of this study was to determine the effects of 7 weeks of high- and low-velocity resistance training on strength and sprint running performance in nine male elite junior sprint runners (age 19.0 +/- 1.4 years, best 100 m times 10.89 +/- 0.21 s; mean +/- s). The athletes continued their sprint training throughout the study, but their resistance training programme was replaced by one in which the movement velocities of hip extension and flexion, knee extension and flexion and squat exercises varied according to the loads lifted (i.e. 30-50% and 70-90% of 1-RM in the high- and low-velocity training groups, respectively). There were no between-group differences in hip flexion or extension torque produced at 1.05, 4.74 or 8.42 rad . s(-1), 20 m acceleration or 20 m 'flying' running times, or 1-RM squat lift strength either before or after training. This was despite significant improvements in 20 m acceleration time (P < 0.01), squat strength (P< 0.05), isokinetic hip flexion torque at 4.74 rad . s(-1) and hip extension torque at 1.05 and 4.74 rad . s(-1) for the athletes as a whole over the training period. Although velocity-specific strength adaptations have been shown to occur rapidly in untrained and non-concurrently training individuals, the present results suggest a lack of velocity-specific performance changes in elite concurrently training sprint runners performing a combination of traditional and semi-specific resistance training exercises.