55 resultados para hepatic lesions
Resumo:
Background: Dental erosion manifests as cupped lesions on cusp apices and in fissures of teeth in patients from southeast Queensland referred with excessive tooth wear When found in young adults, these lesions may indicate early onset of active dental erosion. If the numbers and extent of cupped lesions increase with age, erosion may be a slow cumulative process. Methods: This cross-sectional study recorded the presence or absence and the relative sizes of cupped lesions from all cusps and occlusal fissures on premolar and permanent molar teeth from study models by image analysis. Type-specimens of cupped lesions were examined. Results: The Incidence by tooth reflected time in the mouth, post-tooth emergence. A linear increase in lesion number and size, with age, was found. However, cupped lesions occurred on mandibular first molar cusp apices as often, and attained greater extent, in adults under 27 years compared with older subjects. Conclusion: Marked differences were found between lesion number and size, between maxillary and mandibular molar sites that reflect differences in salivary protection against dental erosion. The significance of this study is that the mandibular first permanent molar indicates the age of onset and severity of dental erosion.
Resumo:
The changing incidence of adenocarcinomas, particularly in the oesophagus and gastric cardia, has led to the rapid expansion of screening programmes aimed at detecting the precursor lesion of dysplasia before adenocarcinoma develops. The pathologist now has an important role in first diagnosing patients at risk for developing dysplasia, and then correctly classifying dysplasia when it occurs. Barrett's oesophagus has had different diagnostic criteria in previous years but is currently diagnosed by the presence of intestinal metaplasia of any length in the true oesophagus. Intestinal metaplasia confined only to the gastro-oesophageal junction or cardia is of uncertain significance but is probably common, with less risk of progressing to dysplasia or malignancy. In the stomach, patients with autoimmune atrophic gastritis and Helicobacter-associated multifocal atrophic gastritis have an increased risk of adenocarcinoma, but screening protocols are not well-developed compared with those used for Barrett's oesophagus. Dysplasia of glandular epithelium can be classified using well-described criteria. Low grade dysplasia is the most common type and regresses or remains stable in the majority of patients. High grade dysplasia is more ominous clinically, with a propensity to coexist with or progress to adenocarcinoma.
Resumo:
This work studied the structure-hepatic disposition relationships for cationic drugs of varying lipophilicity using a single-pass, in situ rat liver preparation. The lipophilicity among the cationic drugs studied in this work is in the following order: diltiazem. propranolol. labetalol. prazosin. antipyrine. atenolol. Parameters characterizing the hepatic distribution and elimination kinetics of the drugs were estimated using the multiple indicator dilution method. The kinetic model used to describe drug transport (the two-phase stochastic model) integrated cytoplasmic binding kinetics and belongs to the class of barrier-limited and space-distributed liver models. Hepatic extraction ratio (E) (0.30-0.92) increased with lipophilicity. The intracellular binding rate constant (k(on)) and the equilibrium amount ratios characterizing the slowly and rapidly equilibrating binding sites (K-S and K-R) increase with the lipophilicity of drug (k(on) : 0.05-0.35 s(-1); K-S : 0.61-16.67; K-R : 0.36-0.95), whereas the intracellular unbinding rate constant (k(off)) decreases with the lipophilicity of drug (0.081-0.021 s(-1)). The partition ratio of influx (k(in)) and efflux rate constant (k(out)), k(in)/k(out), increases with increasing pK(a) value of the drug [from 1.72 for antipyrine (pK(a) = 1.45) to 9.76 for propranolol (pK(a) = 9.45)], the differences in k(in/kout) for the different drugs mainly arising from ion trapping in the mitochondria and lysosomes. The value of intrinsic elimination clearance (CLint), permeation clearance (CLpT), and permeability-surface area product (PS) all increase with the lipophilicity of drug [CLint (ml . min(-1) . g(-1) of liver): 10.08-67.41; CLpT (ml . min(-1) . g(-1) of liver): 10.80-5.35; PS (ml . min(-1) . g(-1) of liver): 14.59-90.54]. It is concluded that cationic drug kinetics in the liver can be modeled using models that integrate the presence of cytoplasmic binding, a hepatocyte barrier, and a vascular transit density function.
Resumo:
A 47 year old man undergoing immunotherapy for metastatic melanoma with autologous dendritic cells pulsed with autologous tumour peptide and hepatitis a surface antigen developed acute left ankle arthritis. Gout and acute infection were excluded, and an autoimmune aetiology or occult metastasis were considered. The arthritis initially subsided with indomethacin, but the symptoms recurred 2 months later, and magnetic resonance imaging demonstrated metastatic melanoma of the left talus. Immunohistochemical staining of a cerebral metastatic deposit biopsied 1 week after the onset of arthritis demonstrated T-cell and macrophage infiltration of the tumour. In addition, the patient developed melanoma-specific delayed type hypersensitivity and cytotoxic T-cell responses after vaccination. Thus, the monoarthritis represented an 'appropriate' inflammatory response directed against metastatic melanoma. (C) 2001 Lippincott Williams & Wilkins.
Resumo:
After the transition from in utero to newborn life, the neonate becomes solely reliant upon its own drug clearance processes to metabolise xenobiotics. Whilst most studies of neonatal hepatic drug elimination have focussed upon in vitro expression and activities of drug-metabolising enzymes, the rapid physiological changes in the early neonatal period of life also need to be considered. There are dramatic changes in neonatal liver blood how and hepatic oxygenation due to the loss of the umbilical blood supply, the increasing portal vein blood flow, and the gradual closure of the ductus venosus shunt during the first week of life. These changes which may well affect the capacity of neonatal hepatic drug metabolism. The hepatic expression of cytochromes P450 1A2, 2C, 2D6, 2E1 and 3A4 develop at different rates in the postnatal period, whilst 3A7 expression diminishes. Hepatic glucuronidation in the human neonate is relatively immature at birth, which contrasts with the considerably more mature neonatal hepatic sulfation activity. Limited in vivo studies show that the human neonate can significantly metabolise xenobiotics but clearance is considerably less compared with the older infant and adult. The neonatal population included in pharmacological studies is highly heterogeneous with respect to age, body weight, ductus venosus closure and disease processes, making it difficult to interpret data arising from human neonatal studies. Studies in the perfused foetal and neonatal sheep liver have demonstrated how the oxidative and conjugative hepatic elimination of drugs by the intact organ is significantly increased during the first week of life, highlighting that future studies will need to consider the profound physiological changes that may influence neonatal hepatic drug elimination shortly after birth.
Resumo:
Background and Aims: Hepatic steatosis has been shown to be associated with lipid peroxidation and hepatic fibrosis in a variety of liver diseases including non-alcoholic fatty liver disease. However, the lobular distribution of lipid peroxidation associated with hepatic steatosis, and the influence of hepatic iron stores on this are unknown. The aim of this study was to assess the distribution of lipid peroxidation in association with these factors, and the relationship of this to the fibrogenic cascade. Methods: Liver biopsies from 39 patients with varying degrees of hepatic steatosis were assessed for evidence of lipid peroxidation (malondialdehyde adducts), hepatic iron, inflammation, fibrosis, hepatic ;stellate cell activation (alpha-smooth muscle actin and TGF-beta expression) and collagen type I synthesis (procollagen a 1 (I) mRNA). Results: Lipid peroxidation occurred in and adjacent to fat-laden hepatocytes and was maximal in acinar zone 3. Fibrosis was associated with steatosis (P < 0.04), lipid peroxidation (P < 0.05) and hepatic iron stores (P < 0.02). Multivariate logistic regression analysis confirmed the association between steatosis and lipid peroxidation within zone 3 hepatocytes (P < 0.05), while for hepatic iron, lipid peroxidation was seen within sinusoidal cells (P < 0.05), particularly in zone 1 (P < 0.02). Steatosis was also associated with acinar inflammation (P < 0.005). α-Smooth muscle actin expression was present in association with both lipid peroxidation and fibrosis. Although the effects of steatosis and iron on lipid peroxidation and fibrosis were additive, there was no evidence of a specific synergistic interaction between them. Conclusions: These observations support a model where steatosis exerts an effect on fibrosis through lipid peroxidation, particularly in zone 3 hepatocytes. (C) 2001 Blackwell Science Asia Pty Ltd.
Resumo:
Background & Aims: There is a significant relationship between inheritance of high transforming growth factor (TGF)-beta1 and angiotensinogen-producing genotypes and the development of progressive hepatic fibrosis in patients with chronic hepatitis C. In cardiac and renal fibrosis, TGF-beta1 production may be enhanced by angiotensin II, the principal effector molecule of the renin-angiotensin system. The aim of the present study was to determine the effects of the angiotensin converting enzyme inhibitor, captopril, on the progression of hepatic fibrosis in the rat bile duct ligation model. Methods: Rats were treated with captopril (100 mg kg(-1) day(-1)) commencing 1 or 2 weeks after bile duct ligation. Animals with bile duct ligation only and sham-operated animals sewed as controls. Four weeks after bile duct ligation, indices of fibrosis were assessed. Results: Cap topril treatment significantly reduced hepatic hydroxyproline levels, mean fibrosis score, steady state messenger RNA levels of TGF-beta1 and procollagen alpha1(I), and matrix metalloproteinase 2 and 9 activity. Conclusions: Captopril significantly attenuates the progression of hepatic fibrosis in the vat bile duct ligation model, and its effectiveness should be studied in human chronic liver diseases associated with progressive fibrosis.
Resumo:
It is now 35 years since Brandtzaeg and Kraus (1965) published their seminal work entitled Autoimmunity and periodontal disease. Initially, this work led to the concept that destructive periodontitis was a localized hypersensitivity reaction involving immune complex formation within the tissues. In 1970, Ivanyi and Lehner highlighted a possible role for cell-mediated immunity, which stimulated a flurry of activity centered on the role of lymphokines such as osteoclast-activating factor (OAF), macrophage-activating factor (MAF), macrophage migration inhibition factor (MIF), and myriad others. In the late 1970s and early 1980s, attention focused on the role of polymorphonuclear neutrophils, and it was thought that periodontal destruction occurred as a series of acute exacerbations. As well, at this stage doubt was being cast on the concept that there was a neutrophil chemotactic defect in periodontitis patients. Once it was realized that neutrophils were primarily protective and that severe periodontal destruction occurred in the absence of these cells, attention swung back to the role of lymphocytes and in particular the regulatory role of T-cells. By this time in the early 1990s, while the roles of interleukin (IL)-1, prostaglandin (PG) E-2, and metalloproteinases as the destructive mediators in periodontal disease were largely understood, the control and regulation of these cytokines remained controversial. With the widespread acceptance of the Th1/Th2 paradigm, the regulatory role of T-cells became the main focus of attention, Two apparently conflicting theories have emerged. One is based on direct observations of human lesions, while the other is based on animal model experiments and the inability to demonstrate IL-4 mRNA in gingival extracts. As part of the Controversy series, this review is intended to stimulate debate and hence may appear in some places provocative. In this context, this review will present the case that destructive periodontitis is due to the nature of the lymphocytic infiltrate and is not due to periodic acute exacerbations, nor is it due to the so-called virulence factors of putative periodontal pathogens.
Resumo:
Four animal models were used to quantitatively evaluate hepatic alterations in this study: (1) a carbon tetrachloride control group (phenobarbital treatment only), (2) a CCl4-treated group (phenobarbital with CCl4 treatment), (3) an alcohol-treated group (liquid diet with alcohol treatment), and (4) a pair-fed alcohol control group (liquid diet only). At the end of induction, single-pass perfused livers were used to conduct multiple indicator dilution (MID) studies. Hepatic spaces (vascular space, extravascular albumin space, extravascular sucrose space, and cellular distribution volume) and water hepatocyte permeability/surface area product were estimated from nonlinear regression of outflow concentration versus time profile data. The hepatic extraction ratio of H-3-taurocholate was determined by the nonparametric moments method. Livers were then dissected for histopathologic analyses (e.g., fibrosis index, number of fenestrae). In these 4 models, CCl4-treated rats were found to have the smallest vascular space, extravascular albumin space, H-3-taurocholate extraction, and water hepatocyte permeability/surface area product but the largest extravascular sucrose space and cellular distribution volume. In addition, a linear relationship was found to exist between histopathologic analyses (fibrosis index or number of fenestrae) and hepatic spaces. The hepatic extraction ratio of H-3-taurocholate and water hepatocyte permeability/surface area product also correlated to the severity of fibrosis as defined by the fibrosis index. In conclusion, the multiple indicator dilution data obtained from the in situ perfused rat liver can be directly related to histopathologic analyses.
Resumo:
The neuropathological changes associated with Huntington's disease (HD) are most marked in the head of the caudate nucleus and, to a lesser extent, in the putamen and globus pallidus, suggesting that at least part of the language impairments found in patients with HD may result from non-thalamic subcortical (NTS) pathology. The present study aimed to test the hypothesis that a signature profile of impaired language functions is found in patients who have sustained damage to the non-thalamic subcortex, either focally induced or resulting from neurodegenerative pathology. The language abilities of a group of patients with Huntington's disease (n=13) were compared with those of an age- and education-matched group of patients with chronic NTS lesions following stroke (n=13) and a non-neurologically impaired control group (n=13). The three groups were compared on language tasks that assessed both primary and more complex language abilities. The primary language battery consisted of The Western Aphasia Battery and The Boston Naming Test, whilst the more complex cognitive-linguistic battery employed selected subtests from The Test of Language Competence-Expanded, The Test of Word Knowledge and The Word Test-Revised. On many of the tests of primary language function from the Western Aphasia Battery, both the HD and NTS participants performed in a similar manner to the control participants. The language performances of the HD participants were significantly more impaired (p<0.05 using modified Bonferroni adjustments) than the control group, however, on various lexico-semantic tasks (e. g. the Boston Naming Test and providing definitions), on both single-word and sentence-level generative tasks (e. g. category fluency and formulating sentences), and on tasks which required interpretation of ambiguous, figurative and inferential meaning. The difficulties that patients with HD experienced with tasks assessing complex language abilities were strikingly similar, both qualitatively and quantitatively, to the language profile produced by NTS participants. The results provide evidence to suggest that a signature language profile is associated with damage to the non-thalamic subcortex resulting from either focal neurological insult or a degenerative disease.
Resumo:
The conventional convection-dispersion model is widely used to interrelate hepatic availability (F) and clearance (Cl) with the morphology and physiology of the liver and to predict effects such as changes in liver blood flow on F and Cl. The extension of this model to include nonlinear kinetics and zonal heterogeneity of the liver is not straightforward and requires numerical solution of partial differential equation, which is not available in standard nonlinear regression analysis software. In this paper, we describe an alternative compartmental model representation of hepatic disposition (including elimination). The model allows the use of standard software for data analysis and accurately describes the outflow concentration-time profile for a vascular marker after bolus injection into the liver. In an evaluation of a number of different compartmental models, the most accurate model required eight vascular compartments, two of them with back mixing. In addition, the model includes two adjacent secondary vascular compartments to describe the tail section of the concentration-time profile for a reference marker. The model has the added flexibility of being easy to modify to model various enzyme distributions and nonlinear elimination. Model predictions of F, MTT, CV2, and concentration-time profile as well as parameter estimates for experimental data of an eliminated solute (palmitate) are comparable to those for the extended convection-dispersion model.
Resumo:
The disposition kinetics of six cationic drugs in perfused diseased and normal rat livers were determined by multiple indicator dilution and related to the drug physicochemical properties and liver histopathology. A carbon tetrachloride (CCl4)induced acute hepatocellular injury model had a higher fibrosis index (FI), determined by computer-assisted image analysis, than did an alcohol-induced chronic hepatocellular injury model. The alcohol-treated group had the highest hepatic alpha(1)- acid glycoprotein, microsomal protein (MP), and cytochrome P450 (P450) concentrations. Various pharmacokinetic parameters could be related to the octanol-water partition coefficient (log P-app) of the drug as a surrogate for plasma membrane partition coefficient and affinity for MP or P450, the dependence being lower in the CCl4-treated group and higher in the alcohol-treated group relative to controls. Stepwise regression analysis showed that hepatic extraction ratio, permeability-surface area product, tissue-binding constant, intrinsic clearance, partition ratio of influx (k(in)) and efflux rate constant (k(out)), and k(in)/k(out) were related to physicochemical properties of drug (log P-app or pK(a)) and liver histopathology (FI, MP, or P450). In addition, hepatocyte organelle ion trapping of cationic drugs was evident in all groups. It is concluded that fibrosis-inducing hepatic disease effects on cationic drug disposition in the liver may be predicted from drug properties and liver histopathology.
Resumo:
Background and Aims: Zomepirac (ZP), a non-steroidal anti-inflammatory drug (NSAID), has been reported to cause immune-mediated liver injury. In vivo, ZP is metabolized to a chemically reactive acyl glucuronide conjugate (ZAG) which can undergo covalent adduct formation with proteins. Such acyl glucuronide-derived drug-protein adducts may be important in the development of immune and toxic responses caused by NSAID. We have shown using immunoabsorptions that the 110 kDa CD26 (dipeptidyl peptidase IV) is one of the hepatic target proteins for covalent modification by ZAG. In the present study, a CD26-deficient mouse strain was used to examine protein targets for covalent modification by ZP/metabolites in the liver. Methods and Results: The CD26-deficient phenotype was confirmed by immunohistochemistry, flow cytometry analysis, RT-PCR, enzyme assay and immunoblotting. Moreover, by using monoclonal antibody immunoblots, CD26 was not detected in the livers of ZP-treated CD26-deficient mice. Immunoblots using a polyclonal antiserum to ZP on liver from ZP-treated mice showed three major sizes of protein bands, in the 70, 110 and 140 kDa regions. Most, but not all, of the anti-ZP immunoreactivity in the 110 kDa region was absent from ZP-treated CD26-deficient mice. Conclusion: These data definitively showed that CD26 was a component of ZP-modified proteins in vivo. In addition, the data suggested that at least one other protein of approximately 110 kDa was modified by covalent adduct formation with ZAG. (C) 2002 Blackwell Science Asia Pty Ltd.