124 resultados para heparan sulfate mimetics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND. Prostate secretory granules (PSG) represent the basic secretory unit of the prostate gland, containing many of its exocrine proteases. Recent analysis of intraluminal corpora amylacea, a proposed by-product of PSG secretion, detected sulfated glycosaminoglycans (GAG) possibly keratan sulfate (KS),indicating a secretory mechanism for GAG in the human prostate surface epithelial cell. METHODS. Immunostains using anti-KS and anti-prostate-specific antigen (PSA) were evaluated on 10 sequential radical prostatectomy specimens, three of which had received neoadjuvant antiandrogen therapy. Extracts of normal secretory tissue as well as a sample composed almost entirely of prostatic stroma were subjected to Western blot analysis, using the same antibody panel. RESULTS. Keratan sulfate secretion from the normal prostate epithelial cell has been confirmed and correlates, as does PSA, with the presence of cytoplasmic PSG. No such correlation exists in most adenocarcinomas or in benign epithelium after androgen ablation. Western blot analyses confirmed tissue immunostains and demonstrated a secretory proteoglycan of 70-95 kDa. CONCLUSIONS. Recognition of PSG heralds a novel secretory mechanism within the human prostate gland that is linked to the secretion of KS. The role of KS in normal prostate secretion remains unknown, although it appears downregulated in neoplastic and androgen-ablated cells. (C) 2000 Wiley-Liss, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nuclear magnetic resonance spectroscopy was used to investigate the conformations of the platypus venom C-type natriuretic peptide A (OvCNPa) in aqueous solutions and in solutions containing sodium dodecyl sulfate (SDS) micelles. The chemically synthesized OvCNPa showed a substantial decrease in flexibility in aqueous solution at 10 degreesC, allowing the observation of medium- and long-range nuclear Overhauser enhancement (NOE) connectivities. Three-dimensional structures calculated using these data showed flexible and reasonably well-defined regions, the locations of which were similar in the two solvents. In aqueous solution, the linear part that spans residues 3-14 was basically an extended conformation while the cyclic portion, defined by residues 23-39, contained a series of beta-turns. The overall shape of the cyclic portion was similar to that observed for an atrial natriuretic peptide (ANP) variant in aqueous solution. OvCNPa adopted a different conformation in SDS micelles wherein the N-terminal region, defined by residues 2-10, was more compact, characterised by turns and a helix, while the cyclic region had turns and an overall shape that was fundamentally different from those structures observed in aqueous solution. The hydrophobic cluster, situated at the centre of the ring of the structure in aqueous solution, was absent in the structure in the presence of SDS micelles. Thus, OvCNPa interacts with SDS micelles and can possibly form ion-channels in cell membranes. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND. Secretory epithelial cells of human prostate contain a keratan sulfate proteoglycan (KSPG) associated with the prostatic secretory granules (PSGs). The proteoglycan has not been identified, but like the PSGs, it is lost in the early stages of malignant transformation. METHODS. Anion exchange and affinity chromatography were used to purify KSPG from human prostate tissue. Enzymatic deglycosylation was used to remove keratan sulfate (KS). The core protein was isolated using 2D gel electrophoresis, digested in-gel with trypsin, and identified by peptide mass fingerprinting (PMF). RESULTS. The purified proteoglycan was detected as a broad smear on Western blots with an apparent molecular weight of 65-95 kDa. The KS moiety was susceptible to digestion with keratanase 11 and peptide N-glycosidase F defining it as highly sulfated and N-linked to the core protein. The core protein was identified, following deglycosylation and PMF, as lumican and subsequently confirmed by Western blotting using an anti-lumican antibody. CONCLUSIONS. The KSPG associated with PSGs in normal prostate epithelium is lumican. While the role of lumican in extracellular matrix is well established, its function in the prostate secretory process is not known. It's potential to facilitate packaging of polyamines in PSGs, to act as a tumor suppressor and to mark the early stages of malignant transformation warrant further investigation. (C) 2003 Wiley-Liss, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sulfate is required for detoxification of xenobiotics such as acetaminophen (APAP), a leading cause of liver failure in humans. The NaS1 sulfate transporter maintains blood sulfate levels sufficiently high for sulforiation reactions to work effectively for drug detoxification. In the present study, we identified two loss-of-function polymorphisms in the human NaS1 gene and showed the Nas1-null mouse to be hypersensitive to APAP hepatotoxicity. APAP treatment led to increased liver damage and decreased hepatic glutathione levels in the hyposulfatemic Nas1-null mice compared with that in normosulfatemic wild-type mice. Analysis of urinary APAP metabolites revealed a significantly lower ratio of APAP-sulfate to APAP-glucuronide in the Nas1-null mice. These results suggest hyposulfatemia increases sensitivity to APAP-induced hepatotoxicity by decreasing the sulfonation capacity to metabolize APAP. In conclusion, the results of this study highlight the importance of plasma sulfate level as a key modulator of acetaminophen metabolism and suggest that individuals with reduced NaS1 sulfate transporter function would be more sensitive to hepatotoxic agents.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

All cells require inorganic sulfate for normal function. Sulfate is among the most important macronutrients; in cells and is the fourth most abundant anion in human plasma (300 muM). Sulfate is the major sulfur source in many organisms, and because it is a hydrophilic anion that cannot passively cross the lipid bilayer of cell membranes, all cells require a mechanism for sulfate influx and efflux to ensure an optimal supply of sulfate in the body. The class of proteins involved in moving sulfate into or out of cells is called sulfate transporters. To date, numerous sulfate transporters have been identified in tissues and cells from many origins. These include the renal sulfate transporters NaSi-1 and sat-1, the ubiquitously expressed diastrophic dysplasia sulfate transporter DTDST, the intestinal sulfate transporter DRA that is linked to congenital chloride diarrhea, and the erythrocyte anion exchanger AE1. These transporters have only been isolated in the last 10-15 years, and their physiological roles and contributions to body sulfate homeostasis are just now beginning to be determined. This review focuses on the structural and functional properties of mammalian sulfate transporters and highlights some of regulatory mechanisms that control their expression in vivo, under normal physiological and pathophysiological states.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies have shown a significant effect of insulin administration on serum dehydroepiandrosterone sulfate (DHEA-S) concentration and its metabolic rate, with evidence for the effect in men, but not in women. This could lead to differences in the sources of variation in serum DHEA-S between men and women and in its covariation with insulin concentration. This study aimed to test whether these hypotheses were supported in a sample of healthy adult twins. Serum DHEA-S (n=2287) and plasma insulin (n=2436) were measured in samples from adult male and female twins recruited through the Australian Twin Registry. Models of genetic and environmental sources of variation and covariation were tested against the data. DHEA-S showed substantial genetic effects in both men and women after adjustment for covariates, including sex, age, body mass index, and time since the last meal. There was no significant phenotypic or genetic correlation between DHEA-S and insulin in either men or women. Despite the experimental evidence for insulin infusion producing a reduction in serum DHEA-S and some effect of meals on the observed DHEA-S concentration, there were no associations between insulin and DHEA-S at the population level. Variations in DHEA-S are due to age, sex, obesity, and substantial polygenic genetic influences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Improvements to the routine methods for the determination of actual acidity in suspension for acid sulfate soils (ASS) are introduced. The titratable sulfidic acidity (TSA) results using an improved peroxide-based method were compared with the theoretical acidity predicted by the chromium reducible sulfur method for 9 acid sulfate soils. The regression between these 2 measures of sulfidic acidity was highly significant, the slope of the regression line not significantly different from unity (P = 0.05) and the intercept not significantly different from zero. This contrasts with results of other workers using earlier peroxide oxidation methods, where TSA substantially underestimated the theoretical acidity predicted by reduced inorganic sulfur analysis. Comparison was made between the 2 principal measurements from the improved peroxide method (TSA and S-POS), with S-POS converted to theoretical sulfidic acidity to allow comparison. The relationship between these 2 measurements was highly significant. The effects of titration in suspension, as well as raising titration end points to pH 6.5, were investigated, principally with respect to the titratable actual acidity (TAA) result. TAA results obtained by KCl extraction were compared with those obtained using BaCl2, MgCl2, and water extraction. TAA in 1 M KCl suspensions titrated to pH 6.5 agreed well with titratable actual acidity measured using the 25-h extraction approach of the Lin et al. (2000a) BaCl2 method. Both BaCl2 and KCl solutions were ineffective at fully recovering acidity from synthetic jarosite without repeated extraction and titration. The application of correction factors for the estimation of total actual acidity in ASS is not supported by the results of this investigation. Acid sulfate soils that contain substantial quantities of jarosite or other acid-producing but relatively insoluble sulfate minerals continue to prove problematic to chemically analyse; however, an approach for estimating this component is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Improvements to peroxide oxidation methods for analysing acid sulfate soils (ASS) are introduced. The soil solution ratio has been increased to 1 : 40, titrations are performed in suspension, and the duration of the peroxide digest stage is substantially shortened. For 9 acid sulfate soils, the peroxide oxidisable sulfur value obtained using the improved method was compared with the reduced inorganic sulfur result obtained using the chromium reducible sulfur method. Their regression was highly significant, the slope of the regression line was not significantly different (P = 0.05) from unity, and the intercept not significantly different from zero. A complete sulfur budget for the improved method showed there was no loss of sulfur as has been reported for earlier peroxide oxidation techniques. When soils were very finely ground, efficient oxidation of sulfides was achieved, despite the milder digestion conditions. Highly sulfidic and organic soils were shown to be the most difficult to analyse using either the improved method or the chromium method. No single analytical method can be universally applied to all ASS, rather a suite of methods is necessary for a thorough understanding of many ASS. The improved peroxide method, in combination with the chromium method and the 4 M HCl extraction, form a sound platform for informed decision making on the management of acid sulfate soils.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selective superoxide dismutase (SOD) mimetics are potentially useful in pathological conditions in which there is an overproduction of the superoxide anion O-2.(-). These pathological conditions include inflammation, ischemia/reperfusion, shock, various cardiovascular disorders, amyotrophic lateral sclerosis (ALS) and other neurodegenerative disorders. A major step forward in this field was the development of small-molecule selective SOD mimetics that penetrate cell membranes, These selective SOD mimetics catalytically remove O-2.(-) without interfering with nitric oxide (NO), peroxynitrite (ONOO-) or other radicals such as hydroxyl radical or hydrogen peroxide (H2O2). These selective SOD mimetics (SC-52608, SC-55858, M-40403 and M-40401) have been shown to have benefits in animal models of inflammation, ischemia/reperfusion, shock, thrombosis and diabetes. The next challenge with selective SOD mimetics is to develop therapeutic potential into therapeutic agents.