70 resultados para geometric nonlinearity
Resumo:
Serial reduction in scar thickness has been shown in animal models. We sought whether this reduction in scar thickness may be a result of dilatation of the left ventricle (LV) with stretching and thinning of the wall. Contrast enhanced magnetic resonance imaging (CMRI) was performed to delineate radial scar thickness in 25 patients (age 63±10, 21 men) after myocardial infarction. The LV was divided into 16 segts and the absolute radial scar thickness (ST) and percentage scar to total wall thickness (%ST) were measured. Regional end diastolic (EDV) and end systolic volumes (ESV) of corresponding segments were measured on CMRI. All patients underwent revascularization and serial changes in ST, %ST, and regional volumes were assessed with a mean follow up of 15±5 months. CMRI identified a total of 93 scar segments. An increase in EDV or ESV was associated with a serial reduction inST(versusEDV, r =−0.3, p = 0.01; versusESV, r =−0.3, p = 0.005) and%ST(versusEDV, r =−0.2, p = 0.04; versus ESV, r =−0.3, p = 0.001). For segts associated with a positive increase in EDV (group I) or ESV (group II) there was a significant decrease in ST and %ST, but in those segts with stable EDV (group III) or ESV (group IV) there were no significant changes in ST and %ST (Table).
Resumo:
Finite element analysis (FEA) of nonlinear problems in solid mechanics is a time consuming process, but it can deal rigorously with the problems of both geometric, contact and material nonlinearity that occur in roll forming. The simulation time limits the application of nonlinear FEA to these problems in industrial practice, so that most applications of nonlinear FEA are in theoretical studies and engineering consulting or troubleshooting. Instead, quick methods based on a global assumption of the deformed shape have been used by the roll-forming industry. These approaches are of limited accuracy. This paper proposes a new form-finding method - a relaxation method to solve the nonlinear problem of predicting the deformed shape due to plastic deformation in roll forming. This method involves applying a small perturbation to each discrete node in order to update the local displacement field, while minimizing plastic work. This is iteratively applied to update the positions of all nodes. As the method assumes a local displacement field, the strain and stress components at each node are calculated explicitly. Continued perturbation of nodes leads to optimisation of the displacement field. Another important feature of this paper is a new approach to consideration of strain history. For a stable and continuous process such as rolling and roll forming, the strain history of a point is represented spatially by the states at a row of nodes leading in the direction of rolling to the current one. Therefore the increment of the strain components and the work-increment of a point can be found without moving the object forward. Using this method we can find the solution for rolling or roll forming in just one step. This method is expected to be faster than commercial finite element packages by eliminating repeated solution of large sets of simultaneous equations and the need to update boundary conditions that represent the rolls.
Resumo:
This paper incorporates hierarchical structure into the neoclassical theory of the firm. Firms are hierarchical in two respects: the organization of workers in production and the wage structure. The firm’s hierarchy is represented as the sector of a circle, where the radius represents the hierarchy’s height, the width of the sector represents the breadth of the hierarchy at a given height, and the angle of the sector represents span of control for any given supervisor. A perfectly competitive firm then chooses height and width, as well as capital inputs, in order to maximize profit. We analyze the short run and long run impact of changes in scale economies, input substitutability and input and output prices on the firm’s hierarchical structure. We find that the firm unambiguously becomes more hierarchical as the specialization of its workers increases or as its output price increases relative to input prices. The effect of changes in scale economies is contingent on the output price. The model also brings forth an analysis of wage inequality within the firm, which is found to be independent of technological considerations, and only depends on the firm’s wage schedule.
Resumo:
Proceedings of the 11th Australasian Remote Sensing and Photogrammetry Conference
Resumo:
We analyze the quantum dynamics of radiation propagating in a single-mode optical fiber with dispersion, nonlinearity, and Raman coupling to thermal phonons. We start from a fundamental Hamiltonian that includes the principal known nonlinear effects and quantum-noise sources, including linear gain and loss. Both Markovian and frequency-dependent, non-Markovian reservoirs are treated. This treatment allows quantum Langevin equations, which have a classical form except for additional quantum-noise terms, to be calculated. In practical calculations, it is more useful to transform to Wigner or 1P quasi-probability operator representations. These transformations result in stochastic equations that can be analyzed by use of perturbation theory or exact numerical techniques. The results have applications to fiber-optics communications, networking, and sensor technology.
Resumo:
We propose and demonstrate, theoretically and experimentally, a novel achromatic optical phase shifter modulator based on a frequency-domain optical delay line configured to maintain zero group delay as variable phase delay is generated by means of tilting a mirror. Compared with previously reported phase shifter modulators, e.g., based on the Pancharatnam (geometric) phase, our device is high speed and polarization insensitive and produces a large, bounded phase delay that, uniquely, is one-to-one mapped to a measurable parameter, the tilt angle.
Resumo:
We investigate the effect of the coefficient of the critical nonlinearity for the Neumann problem on the existence of least energy solutions. As a by-product we establish a Sobolev inequality with interior norm.
Resumo:
In an open channel, the transition from super- to sub-critical flow is a flow singularity (the hydraulic jump) characterised by a sharp rise in free-surface elevation, strong turbulence and air entrainment in the roller. A key feature of the hydraulic jump flow is the strong free-surface aeration and air-water flow turbulence. In the present study, similar experiments were conducted with identical inflow Froude numbers Fr1 using a geometric scaling ratio of 2:1. The results of the Froude-similar experiments showed some drastic scale effects in the smaller hydraulic jumps in terms of void fraction, bubble count rate and bubble chord time distributions. Void fraction distributions implied comparatively greater detrainment at low Reynolds numbers yielding some lesser aeration of the jump roller. The dimensionless bubble count rates were significantly lower in the smaller channel, especially in the mixing layer. The bubble chord time distributions were quantitatively close in both channels, and they were not scaled according to a Froude similitude. Simply the hydraulic jump remains a fascinating two-phase flow motion that is still poorly understood.
Resumo:
Traditional waste stabilisation pond (WSP) models encounter problems predicting pond performance because they cannot account for the influence of pond features, such as inlet structure or pond geometry, on fluid hydrodynamics. In this study, two dimensional (2-D) computational fluid dynamics (CFD) models were compared to experimental residence time distributions (RTD) from literature. In one of the-three geometries simulated, the 2-D CFD model successfully predicted the experimental RTD. However, flow patterns in the other two geometries were not well described due to the difficulty of representing the three dimensional (3-D) experimental inlet in the 2-D CFD model, and the sensitivity of the model results to the assumptions used to characterise the inlet. Neither a velocity similarity nor geometric similarity approach to inlet representation in 2-D gave results correlating with experimental data. However. it was shown that 2-D CFD models were not affected by changes in values of model parameters which are difficult to predict, particularly the turbulent inlet conditions. This work suggests that 2-D CFD models cannot be used a priori to give an adequate description of the hydrodynamic patterns in WSP. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
We consider the quantum field theory of two bosonic fields interacting via both parametric (cubic) and quartic couplings. In the case of photonic fields in a nonlinear optical medium, this corresponds to the process of second-harmonic generation (via chi((2)) nonlinearity) modified by the chi((3)) nonlinearity. The quantum solitons or energy eigenstates (bound-state solutions) are obtained exactly in the simplest case of two-particle binding, in one, two, and three space dimensions. We also investigate three-particle binding in one space dimension. The results indicate that the exact quantum solitons of this field theory have a singular, pointlike structure in two and three dimensions-even though the corresponding classical theory is nonsingular. To estimate the physically accessible radii and binding energies of the bound states, we impose a momentum cutoff on the nonlinear couplings. In the case of nonlinear optical interactions, the resulting radii and binding energies of these photonic particlelike excitations in highly nonlinear parametric media appear to be close to physically observable values.
Resumo:
Multidimensional spatiotemporal parametric simultons (simultaneous solitary waves) are possible in a nonlinear chi((2)) medium with a Bragg grating structure, where large effective dispersion occurs near two resonant band gaps for the carrier and second-harmonic field, respectively. The enhanced dispersion allows much reduced interaction lengths, as compared to bulk medium parametric simultons. The nonlinear parametric band-gap medium permits higher-dimensional stationary waves to form. In addition, solitons can occur with lower input powers than conventional nonlinear Schrodinger equation gap solitons. In this paper, the equations for electromagnetic propagation in a grating structure with a parametric nonlinearity are derived from Maxwell's equation using a coupled mode Hamiltonian analysis in one, two, and three spatial dimensions. Simultaneous solitary wave solutions are proved to exist by reducing the equations to the coupled equations describing a nonlinear parametric waveguide, using the effective-mass approximation (EMA). Exact one-dimensional numerical solutions in agreement with the EMA solutions are also given. Direct numerical simulations show that the solutions have similar types of stability properties to the bulk case, providing the carrier waves are tuned to the two Bragg resonances, and the pulses have a width in frequency space less than the band gap. In summary, these equations describe a physically accessible localized nonlinear wave that is stable in up to 3 + 1 dimensions. Possible applications include photonic logic and switching devices. [S1063-651X(98)06109-1].
Resumo:
We review recent developments in quantum and classical soliton theory, leading to the possibility of observing both classical and quantum parametric solitons in higher-dimensional environments. In particular, we consider the theory of three bosonic fields interacting via both parametric (cubic) and quartic couplings. In the case of photonic fields in a nonlinear optical medium this corresponds to the process of sum frequency generation (via chi((2)) nonlinearity) modified by the chi((3)) nonlinearity. Potential applications include an ultrafast photonic AND-gate. The simplest quantum solitons or energy eigenstates (bound-state solutions) of the interacting field Hamiltonian are obtained exactly in three space dimensions. They have a point-like structure-even though the corresponding classical theory is nonsingular. We show that the solutions can be regularized with the imposition of a momentum cut-off on the nonlinear couplings. The case of three-dimensional matter-wave solitons in coupled atomic/molecular Bose-Einstein condensates is discussed.
Resumo:
The development of large-scale solid-stale fermentation (SSF) processes is hampered by the lack of simple tools for the design of SSF bioreactors. The use of semifundamental mathematical models to design and operate SSF bioreactors can be complex. In this work, dimensionless design factors are used to predict the effects of scale and of operational variables on the performance of rotating drum bioreactors. The dimensionless design factor (DDF) is a ratio of the rate of heat generation to the rate of heat removal at the time of peak heat production. It can be used to predict maximum temperatures reached within the substrate bed for given operational variables. Alternatively, given the maximum temperature that can be tolerated during the fermentation, it can be used to explore the combinations of operating variables that prevent that temperature from being exceeded. Comparison of the predictions of the DDF approach with literature data for operation of rotating drums suggests that the DDF is a useful tool. The DDF approach was used to explore the consequences of three scale-up strategies on the required air flow rates and maximum temperatures achieved in the substrate bed as the bioreactor size was increased on the basis of geometric similarity. The first of these strategies was to maintain the superficial flow rate of the process air through the drum constant. The second was to maintain the ratio of volumes of air per volume of bioreactor constant. The third strategy was to adjust the air flow rate with increase in scale in such a manner as to maintain constant the maximum temperature attained in the substrate bed during the fermentation. (C) 2000 John Wiley & Sons, Inc.
Resumo:
Kinematic analysis is conducted to derive the geometric constraints for the geometric design of foldable barrel vaults (FBV) composed of polar or angulated scissor units. Non-linear structural analysis is followed to determine the structural response of FBVs in the fully deployed configuration under static loading. Two load cases are considered: cross wind and longitudinal wind. The effect of varying member sizes, depth-to-span ratio and geometric imperfections is examined. (C) 2000 Elsevier Science Ltd. All rights reserved.