67 resultados para gene transcriptional regulatory network, stochastic differential equation, membership function
Resumo:
Mammalian cells harbor numerous small non-protein-coding RNAs, including small nucleolar RNAs (snoRNAs), microRNAs (miRNAs), short interfering RNAs (siRNAs) and small double-stranded RNAs, which regulate gene expression at many levels including chromatin architecture, RNA editing, RNA stability, translation, and quite possibly transcription and splicing. These RNAs are processed by multistep pathways from the introns and exons of longer primary transcripts, including protein-coding transcripts. Most show distinctive temporal- and tissue-specific expression patterns in different tissues, including embryonal stem cells and the brain, and some are imprinted. Small RNAs control a wide range of developmental and physiological pathways in animals, including hematopoietic differentiation, adipocyte differentiation and insulin secretion in mammals, and have been shown to be perturbed in cancer and other diseases. The extent of transcription of non-coding sequences and the abundance of small RNAs suggests the existence of an extensive regulatory network on the basis of RNA signaling which may underpin the development and much of the phenotypic variation in mammals and other complex organisms and which may have different genetic signatures from sequences encoding proteins.
Resumo:
Bacterial LPS triggers dramatic changes in gene expression in macrophages. We show here that LPS regulated several members of the histone deacetylase (HDAC) family at the mRNA level in murine bone marrow-derived macrophages (BMM). LPS transiently repressed, then induced a number of HDACs (Hdac-4, 5, 7) in BMM, whereas Hdac-1 mRNA was induced more rapidly. Treatment of BMM with trichostatin A (TSA), an inhibitor of HDACs, enhanced LPS-induced expression of the Cox-2, Cxcl2, and Ifit2 genes. In the case of Cox-2, this effect was also apparent at the promoter level. Overexpression of Hdac-8 in RAW264 murine macrophages blocked the ability of LPS to induce Cox-2 mRNA. Another class of LPS-inducible genes, which included Ccl2, Ccl7, and Edn1, was suppressed by TSA, an effect most likely mediated by PU.1 degradation. Hence, HDACs act as potent and selective negative regulators of proinflammatory gene expression and act to prevent excessive inflammatory responses in macrophages.
Resumo:
A stochastic model for solute transport in aquifers is studied based on the concepts of stochastic velocity and stochastic diffusivity. By applying finite difference techniques to the spatial variables of the stochastic governing equation, a system of stiff stochastic ordinary differential equations is obtained. Both the semi-implicit Euler method and the balanced implicit method are used for solving this stochastic system. Based on the Karhunen-Loeve expansion, stochastic processes in time and space are calculated by means of a spatial correlation matrix. Four types of spatial correlation matrices are presented based on the hydraulic properties of physical parameters. Simulations with two types of correlation matrices are presented.
Resumo:
Biologists are increasingly conscious of the critical role that noise plays in cellular functions such as genetic regulation, often in connection with fluctuations in small numbers of key regulatory molecules. This has inspired the development of models that capture this fundamentally discrete and stochastic nature of cellular biology - most notably the Gillespie stochastic simulation algorithm (SSA). The SSA simulates a temporally homogeneous, discrete-state, continuous-time Markov process, and of course the corresponding probabilities and numbers of each molecular species must all remain positive. While accurately serving this purpose, the SSA can be computationally inefficient due to very small time stepping so faster approximations such as the Poisson and Binomial τ-leap methods have been suggested. This work places these leap methods in the context of numerical methods for the solution of stochastic differential equations (SDEs) driven by Poisson noise. This allows analogues of Euler-Maruyuma, Milstein and even higher order methods to be developed through the Itô-Taylor expansions as well as similar derivative-free Runge-Kutta approaches. Numerical results demonstrate that these novel methods compare favourably with existing techniques for simulating biochemical reactions by more accurately capturing crucial properties such as the mean and variance than existing methods.
Resumo:
We investigate the theory of quantum fluctuations in non-equilibrium systems having large critical fluctuations. This allows us to treat the limits imposed by nonlinearities to quantum squeezing and noise reduction, and also to envisage future tests of quantum theory in regions of macroscopic quantum fluctuations. A long-term objective of this research is to identify suitable physical systems in which macroscopic 'Schrodinger cat'-like behaviour may be observed. We investigate two systems in particular of much current experimental interest, namely the degenerate parametric oscillator near threshold, and the evaporatively cooled (BEC). We compare the results obtained in the positive-P representation, as a fully quantum mechanical calculation, with the truncated Wigner phase space equation, also known as semi-classical theory. We show when these results agree and differ in calculations taken beyond the linearized approximation. In the region where the largest quantum fluctuations and Schrodinger cat-like behaviour might be expected, we find that the quantum predictions correspond very closely to the semi-classical theory. Nature abhors observing a Schrodinger car.
Resumo:
A software package that efficiently solves a comprehensive range of problems based on coupled complex nonlinear stochastic ODEs and PDEs is outlined. Its input and output syntax is formulated as a subset of XML, thus making a step towards a standard for specifying numerical simulations.
Resumo:
We develop a systematic theory of critical quantum fluctuations in the driven parametric oscillator. Our analytic results agree well with stochastic numerical simulations. We also compare the results obtained in the positive-P representation, as a fully quantum-mechanical calculation, with the truncated Wigner phase-space equation, also known as the semiclassical theory. We show when these results agree and differ in calculations taken beyond the linearized approximation. We find that the optimal broadband noise reduction occurs just above threshold. In this region where there are large quantum fluctuations in the conjugate variance and macroscopic quantum superposition states might be expected, we find that the quantum predictions correspond very closely to the semiclassical theory.
Resumo:
We develop a systematic theory of quantum fluctuations in the driven optical parametric oscillator, including the region near threshold. This allows us to treat the limits imposed by nonlinearities to quantum squeezing and noise reduction in this nonequilibrium quantum phase transition. In particular, we compute the squeezing spectrum near threshold and calculate the optimum value. We find that the optimal noise reduction occurs at different driving fields, depending on the ratio of damping rates. The largest spectral noise reductions are predicted to occur with a very high-Q second-harmonic cavity. Our analytic results agree well with stochastic numerical simulations. We also compare the results obtained in the positive-P representation, as a fully quantum-mechanical calculation, with the truncated Wigner phase-space equation, also known as the semiclassical theory.
Resumo:
In this paper we propose a novel fast and linearly scalable method for solving master equations arising in the context of gas-phase reactive systems, based on an existent stiff ordinary differential equation integrator. The required solution of a linear system involving the Jacobian matrix is achieved using the GMRES iteration preconditioned using the diffusion approximation to the master equation. In this way we avoid the cubic scaling of traditional master equation solution methods and maintain the low temperature robustness of numerical integration. The method is tested using a master equation modelling the formation of propargyl from the reaction of singlet methylene with acetylene, proceeding through long lived isomerizing intermediates. (C) 2003 American Institute of Physics.
Resumo:
The Epstein - Barr nuclear antigens (EBNA), EBNA-3, -4 and - 6, have previously been shown to act as transcriptional regulators, however, this study identifies another function for these proteins, disruption of the G2/M checkpoint. Lymphoblastoid cell lines (LCLs) treated with a G2/M initiating drug azelaic bishydroxamine ( ABHA) did not show a G2/M checkpoint response, but rather they display an increase in cell death, a characteristic of sensitivity to the cytotoxic effects of the drug. Cell cycle analysis demonstrated that the individual expression of EBNA-3, - 4 or - 6 are capable of disrupting the G2/M checkpoint response induced by ABHA resulting in increased toxicity, whereas EBNA-2, and - 5 were not. EBNA-3 gene family protein expression also disrupted the G2/M checkpoint initiated in response to the genotoxin etoposide and the S phase inhibitor hydroxyurea. The G2 arrest in response to these drugs were sensitive to caffeine, suggesting that ATM/ATR signalling in these checkpoint responses may be blocked by the EBNA-3 family proteins. The function of EBNA-3, - 4 and - 6 proteins appears to be more complex than anticipated and these data suggest a role for these proteins in disrupting the host cell cycle machinery.
Resumo:
We investigate a scheme that makes a quantum nondemolition (QND) measurement of the excitation level of a mesoscopic mechanical oscillator by utilizing the anharmonic coupling between two beam bending modes. The nonlinear coupling between the two modes shifts the resonant frequency of the readout oscillator in proportion to the excitation level of the system oscillator. This frequency shift may be detected as a phase shift of the readout oscillation when driven on resonance. We derive an equation for the reduced density matrix of the system oscillator, and use this to study the conditions under which discrete jumps in the excitation level occur. The appearance of jumps in the actual quantity measured is also studied using the method of quantum trajectories. We consider the feasibility of the scheme for experimentally accessible parameters.
Resumo:
Cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which encodes a chloride channel present in many cells. In cardiomyocytes, we report that multiple exon 1 usage and alternative splicing produces four CFTR transcripts, with different 5'-untranslated regions, CFTRTRAD-139, CFTR-1C/-1A, CFTR-1C, and CFTR-1B. CFTR transcripts containing the novel upstream exons (exons -1C, -1B, and -1A) represent more than 90% of cardiac expressed CFTR mRNA. Regulation of cardiac CFTR expression, in response to developmental and pathological stimuli, is exclusively due to the modulation of CFTR-1C and CFTR-1C/-1A expression. Upstream open reading frames have been identified in the 5'-untranslated regions of all CFTR transcripts that, in conjunction with adjacent stem-loop structures, modulate the efficiency of translation initiation at the AUG codon of the main CFTR coding region in CFTRTRAD-139 and CFTR-1C/-1A transcripts. Exon(-1A), only present in CFTR-1C/-1A transcripts, encodes an AUG codon that is in-frame with the main CFTR open reading frame, the efficient translation of which produces a novel CFTR protein isoform with a curtailed amino terminus. As the expression of this CFTR transcript parallels the spatial and temporal distribution of the cAMP-activated whole-cell current density in normal and diseased hearts, we suggest that CFTR-1C/-1A provides the molecular basis for the cardiac cAMP-activated chloride channel. Our findings provide further insight into the complex nature of in vivo CFTR expression, to which multiple mRNA transcripts, protein isoforms, and post-transcriptional regulatory mechanisms are now added.
Resumo:
Poisson representation techniques provide a powerful method for mapping master equations for birth/death processes -- found in many fields of physics, chemistry and biology -- into more tractable stochastic differential equations. However, the usual expansion is not exact in the presence of boundary terms, which commonly occur when the differential equations are nonlinear. In this paper, a gauge Poisson technique is introduced that eliminates boundary terms, to give an exact representation as a weighted rate equation with stochastic terms. These methods provide novel techniques for calculating and understanding the effects of number correlations in systems that have a master equation description. As examples, correlations induced by strong mutations in genetics, and the astrophysical problem of molecule formation on microscopic grain surfaces are analyzed. Exact analytic results are obtained that can be compared with numerical simulations, demonstrating that stochastic gauge techniques can give exact results where standard Poisson expansions are not able to.
Resumo:
A cDNA corresponding to a transcript induced in culture by N starvation, was identified in Colletotrichum gloeosporioides by a differential hybridisation strategy. The cDNA comprised 905 bp and predicted a 215 aa protein; the gene encoding the cDNA was termed CgDN24. No function for CgDN24 could be predicted by database homology searches using the cDNA sequence and no homologues were found in the sequenced fungal genomes. Transcripts of CgDN24 were detected in infected leaves of Stylosanthes guianensis at stages of infection that corresponded with symptom development. The CgDN24 gene was disrupted by homologous recombination and this led to reduced radial growth rates and the production of hyphae with a hyperbranching phenotype. Normal sporutation was observed, and following conidia inoculation of S. guianensis, normal disease development was obtained. These results demonstrate that CgDN24 is necessary for normal hyphal development in axenic culture but dispensable for phytopathogenicity. (c) 2005 Elsevier GmbH. Alt rights reserved.
Resumo:
Demosponges are considered part of the most basal evolutionary lineage in the animal kingdom. Although the sponge body plan fundamentally differs from that of other metazoans, their development includes many of the hallmarks of bilaterian and eumetazoan embryogenesis, namely fertilization followed by a period of cell division yielding distinct cell populations, which through a gastrulation-like process become allocated into different cell layers and patterned within these layers. These observations suggest that the last common ancestor (LCA) to all living animals was developmentally more sophisticated than is widely appreciated and used asymmetric cell division and morphogen gradients to establish localized populations of specified cells within the embryo. Here we demonstrate that members of a range of transcription factor gene classes, many of which appear to be metazoan-specific, are expressed during the development of the demosponge Reniera, including ANTP, Pax, POU, LIM-HD, Sox, nuclear receptor, Fox (forkhead), T-box, Mef2, and Ets genes. Phylogenetic analysis of these genes suggests that not only the origin but the diversification of some of the major developmental metazoan transcription factor classes took place before sponges diverged from the rest of the Metazoa. Their expression during demosponge development suggests that, as in today's sophisticated metazoans, these genes may have functioned in the regulatory network of the metazoan LCA to control cell specification and regionalized gene expression during embryogenesis.