86 resultados para gamma iron


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Few studies have demonstrated that innate lymphocytes play a major role in preventing spontaneous tumor formation. We evaluated the development of spontaneous tumors in mice lacking beta-2 microglobulin (beta2m; and thus MHC class I, CD1d, and CD16) and/or perform, since these tumor cells would be expected to activate innate effector cells. Approximately half the cohort of perform gene-targeted mice succumbed to spontaneous disseminated B cell lymphomas and in mice that also lacked beta2m, the lymphomas developed earlier (by more than 100 d) and with greater incidence (84%). B cell lymphomas from perforin/beta2m gene-targeted mice effectively primed cell-mediated cytotoxicity and perform, but not IFN-gamma, IL-12, or IL-18, was absolutely essential for tumor rejection. Activated NK1.1(+) and gammadeltaTCR(+) T cells were abundant at the tumor site, and transplanted tumors were strongly rejected by either, or both, of these cell types. Blockade of a number of different known costimulatory pathways failed to prevent tumor rejection. These results reflect a critical role for NK cells and gammadeltaTCP(+) T cells in innate immune surveillance of B cell lymphomas, mediated by as yet undetermined pathway(s) of tumor recognition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Disturbances in iron metabolism often accompany liver disease in humans and hepatic iron deposition is a frequent finding. Since the peptide hepcidin, a major regulator of body iron homeostasis, is synthesised in the liver, alterations in hepcidin expression could be responsible for these effects. To investigate this possibility, we studied hepcidin expression in liver biopsies from patients with hepatitis C virus (HCV) infection, non-alcoholic fatty liver disease (NAFLD) and hemochromatosis (HC). Total RNA was extracted from the liver tissue of 24 HCV, 17 NASH and 5 HC patients, and 17 liver transplant donors (controls). The levels of mRNA for hepcidin and several other molecules involved in iron metabolism (DMT1, Dcytb, hephaestin, ferroportin, TfR1, TfR2, HFE and HJV) were examined by ribonuclease protection assay and expressed relative to the housekeeping gene GAPDH. The expression of hepcidin was significantly decreased in HCV and NASH patients relative to control liver (109±16 and 200±44 versus 325±26 respectively; P=0.008 and 0.02). We have previously reported similar findings in patients with HC, and this was confirmed in the current analysis (176±21; P=0.003). In both HCV and NAFLD patients the expression of the iron reductase Dcytb and the transferrin binding regulatory molecule TfR2 was also decreased, while the cellular iron exporter ferroportin showed a significant increase. Levels of the mRNA for the iron oxidase hephaestin were lower in HCV patients alone, while expression of the major transferrin binding molecule TfR1 was decreased only in NAFLD patients. Of particular interest was the finding that the expression of HJV (which is mutated in patients with juvenile HC) was significantly increased in NAFLD patients. No changes were seen in the expression of the iron importer DMT1 or the regulatory molecule HFE. Decreased expression of hepcidin in patients with HCV and NAFLD provides an explanation why iron homeostasis could be perturbed in these disorders. Reduced hepcidin levels would increase intestinal iron absorption and iron release from macrophages, which could contribute to hepatic iron accumulation. This in turn could lead to alterations in the expression of various proteins involved in iron transport and its regulation. Indeed most of the changes in the expression of such molecules observed in this study are consistent with this. However, the mechanisms leading to changes in the expression of hepcidin in these diseases remain to be elucidated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epithelial malignancies are common in immunosuppressed individuals and the general population. However the mechanisms by which the adaptive immune system can eliminate immunogenic epithelial cells remain undefined. The aim of this project was to determine the effector molecules required for induction of apoptosis in murine epidermal keratinocytes (MEKs) in vitro and in vivo. HPV16E7-specific CTL lines and T cell receptor transgenic (E7TCRtg) effector cells were obtained from wild type (wt)-C57 and syngeneic mice rendered functionally inactive for perforin (Pfp), interferon-g (IFN-g) or FasL. CTLs or E7TCRtg spleen cells were co-cultured with primary MEKs in vitro or transferred into skin graft recipients. Inhibition of colony formation and skin graft rejection were used as indicators of T cell:KC interaction. Wt E7-specific CTLs and CTLs deficient in perforin, FasL or IFN-g produced mean reductions in colony formation of 67% (62.4–71.3%), 72% (71.1–72%), 76% (73–78%) and 21.5% (14– 34%) respectively. Wt, perforin deficient or FasL deficient CTLs all induced rejection of skin grafts (wt: 6/12; Pfp: 9/15; FasL: 3/13 survival). Transfer and immunisation of wt E7TCRtg spleen cells induces rejection of 50% of grafts (4/8 survival). In contrast, perforin or IFN-g deficient E7TCRtg failed to induce graft rejection (5/6; 4/4 survival). FasL deficient E7TCRtg induced nonspecific rejection of grafts (E7- 2/6 survival; C57- 4/7 survival). Therefore IFN-g production by CTL is necessary and sufficient in vitro and in vivo to kill epithelial cells which express a nonself antigen. Assessment of immunotherapies directed against epithelial tissues may be more effectively achieved by assaying the amount of IFN-g production by CD8 T cells, and the number and affinity of those cells, in conjunction with quantitation of perforin mediated effects in short term assays.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental white cast iron with the unprecedented fracture tough ness of 40 MPa m(1/2) is currently being studied to determine the mechanisms of toughening. This paper reports the investigation of the role of strain-induced martensitic (SIM) transformation. The dendritic microconstituent in the toughened alloy consists primarily of retained austenite, with precipitated M(7)C(3) carbides and some martensite. Refrigeration experiments and differential scanning calorimetry (DSC) were used to demonstrate, firstly, that this retained austenite has an ''effective'' sub-ambient M(S) temperature and, secondly, that SIM transformation can occur at ambient temperatures. Comparison between room temperature and elevated temperature K-Ic tests showed that the observed SIM produces a transformation toughening response in the alloy, contributing to, but not fully accounting for, its high tough ness. SIM as a mechanism for transformation toughening has not previously been reported for white cast irons. Microhardness traverses on crack paths and X-ray diffraction (XRD) on fracture surfaces confirmed the interpretation of the K-Ic experiments. Further DSC and quantitative XRD showed that, as heat-treatment temperature is varied, there is a correlation between fracture toughness and the volume fraction of unstable retained austenite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transmission electron microscopy has been used to study the microstructure of an experimental white cast iran, in which a combination of modified alloy composition and unconventional heat treatment has resulted in a fracture toughness of 40 MPa m(-1/2). Microstructural features of the alloy that contribute to the toughness improvement and hence distinguish it from conventional white irons have been investigated. In the as-cast condition the dendrites are fully austenitic and the eutectic consists of M7C3 carbides and martensite. During heat treatment at 1130 degrees C the austenite is partially destabilized by precipitation of chromium-rich M7C3 carbides. This results in a dendritic microconstituent consisting of bulk retained austenite and secondary carbides which are sheathed with martensite. The martensite sheaths, which contain interlath films of retained austenite, are irregular in shape with some laths extending into the bulk retained austenite. Emphasis has been placed on the morphology, distribution, and stability of the retained austenite and its transformation products in the dendrites. The implications of these findings on the transformation toughening mechanism in this alloy are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Newly hatched chickens are highly susceptible to infection by opportunistic pathogens during the first 1 or 2 weeks of life, The use of cytokines as therapeutic agents has been studied in animal models as well as in immunosuppressed patients, This approach has become more feasible in livestock animals, in particular poultry, with the recent cloning of cytokine genes and the development of new technologies, such as live delivery vectors, We have recently cloned the gene for chicken interferon-gamma (Ch-IFN-gamma), Poly-HIS-tagged recombinant Ch-IFN-gamma was expressed in Escherichia coil, was purified by Ni chromatography, and was found to be stable at 4 degrees C and an ambient temperature for at least several months and Several weeks, respectively, Ch-IFN-gamma was capable of protecting chick fibroblasts from undergoing virus-mediated lysis, induced nitrite secretion from chicken macrophages in vitro, and enhanced MHC class II expression on macrophages, Administration of recombinant Ch-IFN-gamma to chickens resulted in enhanced weight gain over a 12-day period, Furthermore, the therapeutic potential of Ch-IFN-gamma was assessed using a coccidial challenge model, Birds were treated with Ch-IFN-gamma or a diluent control and then infected with Eimeria acervulina. Infected birds treated with Ch-IFN-gamma showed improved weight gain relative to noninfected birds, The ability of Ch-IFN-gamma to enhance weight gain in the face of coccidial infection makes it an excellent candidate as a therapeutic agent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ligands of the 2-pyridylcarbaldehyde isonicotinoylhydrazone class show high iron (Fe) sequestering efficacy and have potential as agents for the treatment of Fe overload disease. We have investigated the mechanisms responsible for their high activity. X-ray crystallography studies show that the tridentate chelate 2-pyridylcarbaldehyde isonicotinoylhydrazone undergoes an unexpected oxidation to isonicotinoyl(picolinoyl)hydrazine when complexed with Fe-III. In contrast, in the absence of Fel the parent hydrazone is not oxidized in aerobic aqueous solution. To examine whether the diacylhydrazine could be responsible for the biological effects of 2-pyridylcarbaldehyde isonicotinoylhydrazone, their Fe chelation efficacy was compared. In contrast to its parent hydrazone, the diacylhydrazine showed little Fe chelation activity. Potentiometric titrations suggested that this might be because the diacylhydrazine was charged at physiological pH, hindering its access across membranes to intracellular Fe pools. In contrast, the Fe complex of this diacylhydrazine was charge neutral, which may allow facile movement through membranes. These data allow a model of Fe chelation for this compound to be proposed: the parent aroylhydrazone diffuses through cell membranes to bind Fe and is subsequently oxidized to the diacylhydrazine complex which then diffuses from the cell. Other diacylhydrazine analogues that were charge neutral at physiological pH demonstrated high Fe chelation efficacy. Thus, for this class of ligands, the charge of the chelator appears to be an important factor for determining their ability to access intracellular Fe. The results of this study are significant for understanding the biological activity of 2-pyridylcarbaldehyde isonicotinoylhydrazone and for the design of novel diacylhydrazine chelators for clinical use.