93 resultados para fish wastewater from slaughterhouse
Resumo:
The enhanced biological phosphorus removal (EBPR) process is regularly used for the treatment of wastewater, but suffers from erratic performance. Successful EBPR relies on the growth of bacteria called polyphosphate-accumulating organisms (PAOs), which store phosphorus intracellularly as polyphosphate, thus removing it from wastewater. Metabolic models have been proposed which describe the measured chemical transformations, however genetic evidence is lacking to confirm these hypotheses. The aim of this research was to generate a metagenomic library from biomass enriched in PAOs as determined by phenotypic data and fluorescence in situ hybridisation (FISH) using probes specific for the only described PAO to date, Candidatus Accumulibacter phosphatis. DNA extraction methods were optimised and two fosmid libraries were constructed which contained 93 million base pairs of metagenomic data. Initial screening of the library for 16S rRNA genes revealed fosmids originating from a range of non-pure-cultured wastewater bacteria. The metagenomic libraries constructed will provide the ability to link phylogenetic and metabolic data for bacteria involved in nutrient removal from wastewater. Keywords DNA extraction; EBPR; metagenomic library; 16S rRNA gene.
Resumo:
The parasite community of animals is generally influenced by host physiology, ecology, and phylogeny. Therefore, sympatric and phylogenetically related hosts with similar ecologies should have similar parasite communities. To test this hypothesis we surveyed the endoparasites of 5 closely related cheilinine fishes (Labridae) from the Great Barrier Reef. They were Cheilinus chlorounts, C. trilobatus, C. fasciatils, Epibulus insidiator and OxYcheilinus diagrainnia. VVe examined the relationship between parasitological variables (richness, abundance and diversity) and host characteristics (bodv weight, diet and phuylogeny). The 5 fishes had 31 parasite species with 9-18 parasite species per fish species. Cestode larvae (mostly Tetraphyllidea) were the most abundant and prevalent parasites followed by nematodes and digeneans. Parasites, body size and diet of hosts differed between fish species. In general, body weight, diet and host phylogeny each explained some of the variation in richness and composition of parasites among the fishes. The 2 most closely related species, Cheilinus chlorourus and C. trilobatus, had broadly similar parasites but the Other fish species differed significantly in all variables. However, there was no all -encompassing pattern. This may, be because different lineages of parasites may react differently to ecological variables. We also argue that adult parasites may respond principally to host diet. In contrast, larval parasite composition may respond both to host diet and predator-prey interactions because this is the path by which many, parasites complete their life-cycles. Finally, variation in parasite phylogeny and parasite life-cycles among hosts likely increase the complexity of the system making it difficult to find all-encompassing patterns between host characteristics and parasites, particularly when all the species in rich parasite communities are considered.
Resumo:
The kinetics of naphthalene-2-sulfonic acid (2-NSA) adsorption by granular activated carbon (GAC) were measured and the relationships between adsorption, desorption, bioavailability and biodegradation assessed. The conventional Langmuir model fitted the experimental sorption isotherm data and introduced 2-NSA degrading bacteria, established on the surface of the GAC, did not interfere with adsorption. The potential value of GAC as a microbial support in the aerobic degradation of 2-NSA by Arthrobacter globiformis and Comamonas testosteroni was investigated. Using both virgin and microbially colonised GAC, adsorption removed 2-NSA from the liquid phase up to its saturation capacity of 140 mg/g GAC within 48 h. However, between 83.2% and 93.3% of the adsorbed 2-NSA was bioavailable to both bacterial species as a source of carbon for growth. In comparison to the non-inoculated GAC, the combination of rapid adsorption and biodegradation increased the amount (by 70–93%) of 2-NSA removal from the influent phase as well as the bed-life of the GAC (from 40 to >120 d). A microbially conditioned GAC fixed-bed reactor containing 15 g GAC removed 100% 2-NSA (100 mg/l) from tannery wastewater at an empty bed contact time of 22 min for a minimum of 120 d without the need for GAC reconditioning or replacement. This suggests that small volume GAC bioreactors could be used for tannery wastewater recycling.
Colour removal from industrial wastewater by using the combination of UV/H2O2 and Biological Process
Resumo:
A Pilot-Scale Engineered Ecosystem (PSEE) operated for over two years in sub-tropical conditions, produced an effluent with COD (median 38 mg/L) and TSS (median 3 mg/L) levels comparable to that required by the AS/NZS 1547:2000 Onsite Domestic Wastewater Management standard. Only partial nitrification was achieved as dissimilatory nitrate reduction to ammonia occurred; however the level of NH4-N was reduced by 75% and total inorganic nitrogen by 53%. Phosphorus was not removed by the system due to the lack of regular sludge removal. Mass balances around the system showed that bacteria removed 36% of the influent nitrogen and 76% of the influent COD. Algae and plants were shown to remove 5% of the influent nitrogen, and 6% of the influent phosphorus. Challenges in developing a sustainable on-site wastewater treatment system were largely met by minimising chemical, energy and labour inputs, eliminating the need for frequent sludge handling, and creating an effluent quality suitable for re-use in non-potable applications. However, the sludge removal from the system needs to be adequately managed to avoid excessive accumulation as this can cause a range of negative impacts.
Resumo:
The farming of channel catfish (Ictalurus punctatus) is the largest (by volume and value) and most successful (in terms of market impact) aquaculture industry in the United States of America. Farmed channel catfish is the most consumed (in terms of volume per capita) fish fillet in the U.S. market. Within Australia, it has long been suggested by researchers and industry that silver perch (Bidyanus bidyanus) and possibly other endemic teraponid species possess similar biological attributes for aquaculture as channel catfish and may have the potential to generate a similar industry. The current teraponid industry in Australia, however, shows very little resemblance to the catfish industry, either in production style or market philosophy. A well established budget framework from the literature on U.S. channel catfish farming has been adapted for cost and climate conditions of the Burdekin region, Queensland, Australia. Breakeven prices for the hypothetical teraponid farms were found to be up to 50% higher than those published for catfish farms however were much lower than those reported for silver perch production in Australia using current, endemic styles of production. The breakeven prices for the hypothetical teraponid farms were most sensitive (in order of significance) to feed prices, production rates, interest rates, fingerling prices and electricity prices. At equivalent feed costs the costs of production between the hypothetical catfish farms in the Mississippi, U.S. and the hypothetical teraponid farms in the Burdekin, Australia were remarkably similar. The cost of feeds suitable for teraponid production in Australia are currently around double that of catfish feeds in the U.S. Issues currently hindering the development of a large scale teraponid industry in Australia are discussed.
Resumo:
Glossocercus chelodinae (MacCallum, 1921) n. comb. is redescribed from fresh material recovered from the intestine of an Australian freshwater turtle, Chelodina expansa. G. chelodinae can be distinguished from all other species of the genus by the shape of its rostellar hooks. it is suggested that this species has colonised fish-eating turtles from fish-eating birds. The morphological relationships among Parvitaenia, Bancroftiella and Glossocercus are discussed. The diagnosis of Bancroftiella is amended and marsupials are eliminated as hosts. Bancroftiella sudarikovi Spasskii & Yurpalova, 1970 becomes a synonym of Glossocercus glandularis (Fuhrmann, 1905); only B. tennis Johnston, 1911, the type-species, and B. ardeae Johnston, 1911 remain in the genus.
Resumo:
Caribbean ciguatoxins (C-CTXs) are responsible for the widespread occurrence of ciguatera in the Caribbean Sea. The structure and configuration of C-CTX-1 (1), the major ciguatoxin isolated from the horse-eye jack (Caranx latus), has been determined from DQF-COSY, E-COSY, TOCSY, NOESY, POESY, ge-HSQC. and HMQC experiments performed at 750 MHz and 500 MHz on a 0.13 pmol sample. C-CTX-1 ([M + H](+) m/z 1141.6 Da, molecular formula C62H92O19) has a ciguatoxin/breveroxin ladder structure comprising 14 trans-fused, ether-linked rings (7/6/6/7/8/9/7/6/8/6/7/6/7/6) assembled fi um 6 protonated fragments. The relative stereochemistry and ring configuration of 1 was determined from an analysis of coupling constant and NOE data. Like ciguatoxins in the Pacific Ocean (P-CTX), C-CTX-1 possesses a flexible nine-membered ring which may be a conserved feature among ciguatoxins. However, C-CTX-1 has a longer contiguous carbon backbone (57 vs 55 carbons for P-CTX-1), one extra ring, and a hemiketal in ring N but no spiroketal as found in P-CTX. C-CTX-1 possesses a primary hydroxyl which may allow selective derivatization. A minor analogue, C-CTX-2, was also isolated from fish and assigned the structure 56 epi-C-CTX-1 (2). since it slowly rearranged to C-CTX-1 in solution. Given the structural similarities between Caribbean and Pacific ciguatoxins, we propose that C-CTX-1 and C-CTX-2 arise from a Caribbean strain of the benthic dinoflagellate, Gambierdiscus toxicus.
Resumo:
Two species of Antarctic fish were stressed by moving them from seawater at -1 degrees C to seawater at 10 degrees C and holding them for a period of 10 min. The active cryopelagic species Pagothenia borchgrevinki maintained heart rate while in the benthic species Trematomus bernacchii there was an increase in heart rate. Blood pressure did not change in either species. Both species released catecholamines into the circulation as a consequence of the stress. P. borchgrevinki released the greater amounts, having mean plasma concentrations of 177 +/- 54 nmol.l(-1) noradrenaline and 263 +/- 131 nmol.l(-1) adrenaline at 10 min. Pla.sma noradrenaline concentrations rose to 47 +/- 14 nmol.l(-1) and adrenaline to 73 +/- 28 nmol.l(-1) in T. bernacchii. Blood from P. borchgrevinki was tonometered in the presence of isoprenaline. A fall in extracellular pH suggests the presence of a Na+/H+ antiporter on the red cell membrane, the first demonstration of this in an Antarctic fish. Treatment with the beta-adrenergic antagonist drug sotalol inhibited swelling of red blood cells taken from temperature-stressed P. borchgrevinki, suggesting that the antiporter responds to endogenous catecholamines.