54 resultados para fish species


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Lecithocladium invasor n.sp. is described from the oesophagus of Naso annulatus, N. tuberosus and N. vlamingii on the Great Barrier Reef, Australia. The worms penetrate the oesophageal mucosa and induce chronic transmural nodular granulomas, which expand the full thickness of the oesophageal wall and protrude both into the oesophageal lumen and from the serosal surface. We observed two major types of lesions: large ulcerated, active granulomas, consisting of a central cavity containing a single or multiple live worms; and many smaller chronic fibrous submucosal nodules. Small, identifiable but attenuated, worms and degenerate worm fragments were identified within some chronic nodules. Co-infection of the posterior oesophagus of the same Naso species with Lecithocladium chingi was common. L. chingi is redescribed from N. annulatus, N. brevirostris, N. tuberosus and A vlamingii. Unlike L. invasor n.sp., L. chingi was not associated with significant lesions. The different pathenogenicity of the two species in acanthurid fish is discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A new species of Podocotyloides is described from Sillago bassensis caught off the coast of Western Australia. This is the second report of a species of this genus from Australian waters but the first of a new species. P. victori n. sp. is one of four species whose vitelline follicles extend into the forebody. It is distinguished from the other three species with vitelline follicles in the forebody by its relatively shorter forebody, smaller eggs and bipartite seminal vesicle. Pedunculotrema Fischthal & Thomas, 1970 is reduced to synonymy with Podocotyloides Yamaguti, 1934.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We describe one new species of Telotrema Ozaki, 1933 from the intestine of an acanthurid fish of the Great Barrier Reef. Telotrema brevicaudatum n. sp. is described from 2 mature specimens from the yellowfin surgeonfish, Acanthurus xanthopterus Valenciennes, 1835 ( Acanthuridae), from waters off Lizard Island, Queensland, Australia. This species is distinguished from the type-species, Telotrema caudatum Ozaki, 1933, by the smaller excretory papilla, the massive pars prostatica, the unipartite, globular seminal vesicle, and the intertesticular position of the ovary. The proposal of a new species of Telotrema necessitates re-examination of the generic diagnosis, and the genus is here redefined in light of the morphology of T. brevicaudatum. Telotrema is distinguished from Gyliauchen Nicoll, 1915 by the possession of a ventral sucker which is larger than the pharynx, a straight or sigmoid oesophagus, an extensive and dense vitellarium, and a distinct excretory papilla. We here recognise 3 species and distinguish them in a key. The biogeographical range for species of Telotrema now includes acanthurid and pomacentrid fishes of the western Pacific Ocean.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two species of Antarctic fish were stressed by moving them from seawater at -1 degrees C to seawater at 10 degrees C and holding them for a period of 10 min. The active cryopelagic species Pagothenia borchgrevinki maintained heart rate while in the benthic species Trematomus bernacchii there was an increase in heart rate. Blood pressure did not change in either species. Both species released catecholamines into the circulation as a consequence of the stress. P. borchgrevinki released the greater amounts, having mean plasma concentrations of 177 +/- 54 nmol.l(-1) noradrenaline and 263 +/- 131 nmol.l(-1) adrenaline at 10 min. Pla.sma noradrenaline concentrations rose to 47 +/- 14 nmol.l(-1) and adrenaline to 73 +/- 28 nmol.l(-1) in T. bernacchii. Blood from P. borchgrevinki was tonometered in the presence of isoprenaline. A fall in extracellular pH suggests the presence of a Na+/H+ antiporter on the red cell membrane, the first demonstration of this in an Antarctic fish. Treatment with the beta-adrenergic antagonist drug sotalol inhibited swelling of red blood cells taken from temperature-stressed P. borchgrevinki, suggesting that the antiporter responds to endogenous catecholamines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1, Studies of evolutionary temperature adaptation of muscle and locomotor performance in fish are reviewed with a focus on the Antarctic fauna living at subzero temperatures. 2. Only limited data are available to compare the sustained and burst swimming kinematics and performance of Antarctic, temperate and tropical species. Available data indicate that low temperatures limit maximum swimming performance and this is especially evident in fish larvae. 3, In a recent study, muscle performance in the Antarctic rock cod Notothenia coriiceps at 0 degrees C was found to be sufficient to produce maximum velocities during burst swimming that were similar to those seen in the sculpin Myoxocephalus scorpius at 10 degrees C, indicating temperature compensation of muscle and locomotor performance in the Antarctic fish. However, at 15 degrees C, sculpin produce maximum swimming velocities greater than N, coriiceps at 0 degrees C, 4, It is recommended that strict hypothesis-driven investigations using ecologically relevant measures of performance are undertaken to study temperature adaptation in Antarctic fish, Recent detailed phylogenetic analyses of the Antarctic fish fauna and their temperate relatives will allow a stronger experimental approach by helping to separate what is due to adaptation to the cold and what is due to phylogeny alone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Deep-sea fish, defined as those living below 200 m, inhabit a most unusual photic environment, being exposed to two sources of visible radiation: very dim downwelling sunlight and bioluminescence, both of which are, in most cases. maximal at wavelengths around 450-500 nm. This paper summarises the reflective properties of the ocular tapeta often found in these animals the pigmentation of their lenses and the absorption characteristics of their visual pigments. Deepsea tapeta usually appear blue to the human observer. reflecting mainly shortwave radiation. However, reflection in other parts of the spectrum is not uncommon and uneven tapetal distribution across the retina is widespread. Perhaps surprisingly, given the fact that they live in a photon limited environment, the lenses of some deep-sea teleosts are bright yellow, absorbing much of the shortwave part of the spectrum. Such lenses contain a variety of biochemically distinct pigments which most likely serve to enhance the visibility of bioluminescent signals. Of the 195 different visual pigments characterised by either detergent extract or microspectrophotometry in the retinae of deep-sea fishes, cn. 87% have peak absorbances within the range 468-494 nm. Modelling shows that this is most likely an adaptation for the detection of bioluminescence. Around 13% of deep-sea fish have retinae containing more than one visual pigment. Of these, we highlight three genera of stomiid dragonfishes, which uniquely produce far red bioluminescence from suborbital photophores. Using a combination of longwave-shifted visual pigments and in one species (Malacosteus niger) a chlorophyll-related photosensitizer. these fish have evolved extreme red sensitivity enabling them to see their own bioluminescence and giving them a private spectral waveband invisible to other inhabitants of the deep-ocean. (C) 1998 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three different aspects of the morphological organisation of deep-sea fish retinae are reviewed: First, questions of general cell biological relevance are addressed with respect to the development and proliferation patterns of photoreceptors, and problems associated with the growth of multibank retinae, and with outer segment renewal are discussed in situations where there is no direct contact between the retinal pigment epithelium and the tips of rod outer segments. The second part deals with the neural portion of the deep-sea fish retina. Cell densities are greatly reduced, yet neurohistochemistry demonstrates that all major neurotransmitters and neuropeptides found in other vertebrate retinae are also present in deep-sea fish. Quantitatively, convergence rates in unspecialised parts of the retina are similar to those in nocturnal mammals. The differentiation of horizontal cells makes it unlikely that species with more than a single visual pigment are capable of colour vision. In the third part. the diversity of deep-sea fish retinae is highlighted. Based on the topography of ganglion cells, species are identified with areae or foveae located in various parts of the retina, giving them a greatly improved spatial resolving power in specific parts of their visual fields. The highest degree of specialisation is found in tubular eyes. This is demonstrated in a case study of the scopelarchid retina, where as many as seven regions with different degrees of differentiation can be distinguished, ranging from an area giganto cellularis, regions with grouped rods to retinal diverticulum. (C) 1998 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Apocreadiidae is reviewed and is considered to include genera recognised previously within the families Apocreadiidae, Homalometridae, Schistorchiidae, Sphincterostomatidae and Trematobrienidae. Key features of the family are extensive vitelline follicles, eye-spot pigment dispersed in forebody, I-shaped excretory vesicle, no cirrus-sac and genital pore opening immediately anterior to the ventral sucker (usually) or immediately posterior to it (Postporus Manter, 1949). Three subfamilies and 18 genera are recognised within the Apocreadiidae. The Apocreadiinae comprises Homalometron Stafford, 1904 (new syn. Barbulostomum Ramsey, 1965), Callohelmis n. g., Choanodera Manter, 1940, Crassicutis Manter, 1936, Dactylotrema Bravo-Hollis & Manter, 1957, Marsupioacetabulum Yamaguti, 1952, Microcreadium Simer, 1929, Myzotus Manter, 1940, Neoapocreadium Siddiqi & Cable, 1960, Neomegasolena Siddiqi & Cable, 1960, Pancreadium Manter, 1954, Procaudotestis Szidat, 1954 and Trematobrien Dollfus, 1950. The Schistorchiinae comprises Schistorchis Luhe, 1906, Sphincterostoma Yamaguti, 1937, Sphincteristomum Oshmarin, Mamaev & Parukhin, 1961 and Megacreadium Nagaty, 1956. The Postporinae comprises only Postporus. A key to subfamilies and genera of the Apocreadiidae is provided. It is argued that there is no convincing basis for the recognition of the genus Apocreadium Manter, 1937 and all its constituent species are combined with Homalometron. The following new combinations are proposed for species previously recognised within Apocreadium: Homalometron balistis (Manter, 1947), H. caballeroi (Bravo-Hollis, 1953), H. cryptum (Overstreet, 1969), H. longisinosum (Manter, 1937), H. manteri (Overstreet, 1970), H. mexicanum (Manter, 1937) and H. vinodae (Ahmad, 1985). Apocreadium uroproctoferum Sogandares-Bernal, 1959 is found to lack a uroproct and is made a synonym of H. mexicanum. Homalometron verrunculi nom. nov. is proposed to replace the secondarily pre-occupied H. caballeroi Lamothe-Argumedo, 1965. Barbulostomum is made a synonym of Homalometron and H. cupuloris (Ramsey, 1965) n. comb. is proposed. Neochoanodera is made a synonym of Choanodera and Choanodera ghanensis (Fischthal & Thomas, 1970) n. comb. is proposed. Species within the Apocreadiinae and Postporinae are reviewed and the following are recorded or described from Australian fishes: Homalometron wrightae n. sp. from Achlyopa nigra (Macleay), H. synagris (Yamaguti, 1953) n. comb. from Scolopsis monogramma (Cuvier), H. stradbrokensis n. sp. from Gerres subfasciatus Cuvier, Marsupioacetabulum opallioderma n. sp. from G. subfasciatus, Neoapocreadium karwarensis (Hafeezullah, 1970) n. comb. from G. subfasciatus, N. splendens n. sp. from S. monogramma and Callohelmis pichelinae n. g., n. sp. from Hemigymnus melapterus (Bloch), H. fasciatus (Bloch), Stethojulis bandanensis (Bleeker) andChoerodon venustus (De Vis). Callohelmis is recognised by the combination of absence of tegumental spines, caeca terminating midway between the testes and posterior end of body, ventral sucker enclosed in a tegumental pouch, prominent muscles radiating through the body from the ventral sucker, vitelline follicles not extending into the forebody, and a very short excretory vesicle that opens ventrally. New combinations for species previously recognised within Crassicutis are proposed as follows: Neoapocreadium caranxi (Bilqees, 1976) n. comb., N. gerridis (Nahhas & Cable, 1964) n. comb., N. imtiazi (Ahmad, 1984) n. comb. and N. marina (Manter, 1947) n. comb. The host-specificity and zoogeography of the Apocreadiinae are considered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Relative eye size, gross brain morphology and central localization of 2-[I-125]iodomelatonin binding sites and melatonin receptor gene expression were compared in six gadiform fish living at different depths in the north-east Atlantic Ocean: Phycis blennoides (capture depth range 265-1260 m), Nezumia aequalis (445-1512 m), Coryphaenoides rupestris (706-1932 m), Trachyrincus murrayi (1010-1884 m), Coryphaenoides guentheri (1030 m) and Coryphaenoides (Nematonurus) armatus (2172-4787 m). Amongst these, the eye size range was 0.15-0.35 of head length with a value of 0.19 for C.(N.) armatus, the deepest species. Brain morphology reflected behavioural differences with well-developed olfactory regions in P.blennoides, T.murrayi and C. (N.) armatus and evidence of olfactory deficit in N. aequalis, C. rupestris and C. guentheri. All species had a clearly defined optic tectum with 2-[I-125] iodomelatonin binding and melatonin receptor gene expression localized to specific brain regions in a similar pattern to that found in shallow-water fish. Melatonin receptors were found throughout the visual structures of the brains of all species. Despite living beyond the depth of penetration of solar light these fish have retained central features associated with the coupling of cycles of growth, behaviour and reproduction to the diel light-dark cycle. How this functions in the deep sea remains enigmatic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recruiting coral reef fish larvae from 38 species and 19 families from New Caledonia were examined for parasites. We found 13 parasite species (Platyhelminthes: Monogenea, Cestoda and Trematoda) but no acanthocephalan, crustacean or nematode parasites. Over 23% of individual fish were infected. Didymozoid metacercariae were the most abundant parasites. We conclude that most of the parasites are pelagic species that become 'lost' once the fish larvae have recruited to the reef. Larval coral reef fish probably contribute little to the dispersal of the parasites of the adult fish so that parasite dispersal is more difficult than that of the fish themselves. (C) 2000 Australian Society for Parasitology Inc. Published by Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The colors of 51 species of Hawaiian reef fish have been measured using a spectrometer and therefore can be described in objective terms that are not influenced by the human visual experience. In common with other known reef fish populations, the colors of Hawaiian reef fish occupy spectral positions from 300-800nm; yellow or orange with blue, yellow with black, and black with white are the most frequently combined colors; and there is no link between possession of ultraviolet (UV) reflectance and UV visual sensitivity or the potential for UV visual sensitivity. In contrast to other reef systems, blue, yellow, and orange appear more frequently in Hawaiian reef fish. Based on spectral quality of reflections from fish skin, trends in fish colors can be seen that are indicative of both visually driven selective pressures and chemical or physical constraints on the design of colors. UV-reflecting colors can function as semiprivate communication signals. White or yellow with black form highly contrasting patterns that transmit well through clear water. Labroid fishes display uniquely complex colors but lack the ability to see the UV component that is common in their pigments. Step-shaped spectral curves are usually long-wavelength colors such as yellow or red, and colors with a peak-shaped spectral curves are green, blue, violet, and UV.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years our understanding of the control of ion and urea metabolism in elasmobranch fish has increased with many more species being investigated. This has demonstrated that many species regarded as stenohaline marine are at least, partially euryhaline and may survive in environments less concentrated than full seawater. This presentation will review these recent findings and then compare the osmoregulatory strategies of a partially euryhaline species, Scyliorhinus canicula, with a fully euryhaline migratory species Carcharinus leucas. This will include new data for both species and will generate new models for the control of ion and urea metabolism in elasmobranchs on which to base future research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pretestis laticaecum is described from the small intestine of the freshwater turtle Emydura krefftil. The new species can be distinguished from its congener P. australianus by the following characters; significantly smaller ovary, main lymph vessels reach anterior to posterior testis, genital atrium in mid-oesophageal region, small vitelline follicles clumped around the ovary and significantly larger caeca overlapping. The, position of this species and related genera in fish, the life cycle of P. australianus and the presence of P. laticaecum in turtles suggest that it is a relatively recent host capture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Five commonly imported freshwater ornamental fish: Poecilia reticulata (guppy); Xiphophorus maculatus (platy); Paracheirodon innesi (neon tetra); Paracheirodon axelrodi (cardinal tetra); and Gyrinocheilus aymonieri (sucking catfish), 361 individuals in total, were examined for parasites immediately after being released from quarantine in Australia. Ten parasites species were found: Camallanus cotti; Centrocestus formosanus; Bothriocephalus acheilognathi; Urocleidoides reticulatus; Tetrahymena corlissi; Chilodonella piscicola; Hexamita sp.; Cryptobia sp.; Chloromyxum sp.; and an unidentified larval nematode. Though shipments had come from up to five different exporting companies, parasite prevalence was uniformly high. We suggest that prior to release, fish transported internationally should be checked for high risk pathogens such as Camallanus cotti, B. acheilognathi and Centrocestus formosanus, and treated for common infections such as Hexamita sp., Cryptobia sp. T. corlissi and Chilodonella piscicola to inhibit the spread of disease and enhance the survival of the fish.