33 resultados para filamentous hemagglutinin


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite differences in their morphologies, comparative analyses of 16S rRNA gene sequences revealed high levels of similarity (> 94 %) between strains of the filamentous bacterium 'Candidatus Nostocoida limicola' and the cocci Tetrasphaera australiensis and Tetrasphaera japonica and the rod Tetrasphaera elongata, all isolated from activated sludge. These sequence data and their chemotaxonomic characters, including cell wall, menaquinone and lipid compositions and fingerprints of their 16S-23S rRNA intergenic regions, support the proposition that these isolates should be combined into a single genus containing six species, in the family Intrasporangiaceae in the Actinobacteria. This suggestion receives additional support from DNA-DNA hybridization data and when partial sequences of the rpoC1 gene are compared between these strains. Even though few phenotypic characterization data were obtained for these slowly growing isolates, it is proposed, on the basis of the extensive chemotaxonomic and molecular evidence presented here, that 'Candidatus N. limicola' strains Ben 17, Ben 18, Ben 67, Ben 68 and Ben 74 all be placed into the species Tetrasphaera jenkinsii sp. nov. (type strain Ben 74(T) = DSM 17519(T) = NCIMB 14128(T)), 'Candidatus N. limicola' strain Ben 70 into Tetrasphaera vanveenii sp. nov. (type strain Ben 70(T) = DSM 17518(T) = NCIMB 14127(T)) and 'Candidatus N. limicola' strains Ver 1 and Ver 2 into Tetrasphaera veronensis sp. nov. (type strain Ver 1(T) = DSM 17520(T) = NCIMB 14129(T)).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The complete genome sequence of the Australian 1-2 heat-tolerant Newcastle disease virus (NDV) vaccine (master seed stocks) was determined and compared to the sequence of the parent virus from which it had been derived after exposure of the parent stock at 56 degrees C for 30 min. Nucleotide changes were observed at a number of positions with synonymous mutations being greater than those observed for non-synonymous mutations. Sequence data for the HN gene of a parental culture of V4 and two heat-tolerant variants of V4 were obtained. These were compared with the data for the 1-2 viruses and with published sequences for parental V4 and for a number of ND vaccine strains. Sequence analyses did not reveal the ARG 303 deletion in the HN protein, previously claimed to be responsible for the thermostable phenotype. No consistent changes were detected that would indicate involvement of the HN protein in heat resistance. The majority of alterations were observed in the L protein of the virus and it is proposed that these alterations were responsible for the heat-tolerant phenotype of the 1-2 NDV vaccine. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The potential role of viruses in coral disease has only recently begun to receive attention. Here we describe our attempts to determine whether viruses are present in thermally stressed corals Pavona danai, Acropora formosa and Stylophora pistillata and zoanthids Zoanthus sp., and their zooxanthellae. Heat-shocked P. danai, A. formosa and Zoanthus sp. all produced numerous virus-like particles (VLPs) that were evident in the animal tissue, zooxanthellae and the surrounding seawater; VLPs were also seen around heat-shocked freshly isolated zooxanthellae (FIZ) from P. danai and S. pistillata. The most commonly seen VLPs were tail-less, hexagonal and about 40 to 50 nm in diameter, though a diverse range of other VLP morphotypes (e.g. rounded, rod-shaped, droplet-shaped, filamentous) were also present around corals. When VLPs around heat-shocked FIZ from S. pistillata were added to non-stressed FIZ from this coral, they resulted in cell lysis, suggesting that an infectious agent was present; however, analysis with transmission electron microscopy provided no clear evidence of viral infection. The release of diverse VLPs was again apparent when flow cytometry was used to enumerate release by heat-stressed A. formosa nubbins. Our data support the infection of reef corals by viruses, though we cannot yet determine the precise origin (i.e. coral, zooxanthellae and/or surface microbes) of the VLPs seen. Furthermore, genome sequence data are required to establish the presence of viruses unequivocally.